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Abstract We present AutomataDAO, a decentralized data marketplace for robot
and IoT cyberphysical systems. Unlike present literature on blockchain-based data
marketplaces, AutomataDAO is implemented as a decentralized autonomous orga-
nization (DAO) through a set of governance smart contracts that account for both
human and synthetic agents that may take part in the DAO. Concerns over trans-
actional costs and throughput are resolved using state channel technology, and a
preliminary decentralized ID (DID) solution is leveraged to establish a reputation
system that is considered within the cryptoeconomics of the system; the latter is also
accounted for in the market’s data pricing model.

Keywords Data marketplace · Mobile robots · IoT · Blockchain · Smart
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1 Introduction

Mobile robots present ample opportunities for data collection. Unlike, stationary
robotic systems (e.g. industrial manipulators) or traditional Internet of Things (IoT)
devices (e.g. motes)—mobile robots can navigate remote environments or inspect
points of interest be it through direct teleportation, semi-autonomously or fully
autonomously. Whether it be an unmanned ground vehicle (UGV) or an unmanned
aerial vehicle (UAV)—data collection performed by mobile robots can be more thor-
ough, accurate and reliable than data sourced from static sensors or crowd-sourced
from humans. Data collection can be more thorough and accurate due to a mobile
robot’s ability to navigate and cover unsurveyed areas. It can be more reliable due
to the ability of networked robots to collaborate and re-assign sensing tasks during
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failures. Overall real-time data collected, at the extent that robots are able to, can be
of great value to both businesses and the commons.

The present most efficient means to acquire large amounts of data is through cen-
tralized data marketplaces. These marketplaces purchase data, perform due diligence
on data providers, and directly re-sell or broker data through dedicated online portals.
Overall, these services are necessary due to the lack of trust between the originating
data providers and buyers. This lack of trust is due to various reasons such as con-
cerns over: (1) the quality or integrity of datasets, (2) data collection practices or (3)
long-term reliability of the data provider. Similar to other traditional centralized mar-
ketplaces, data marketplaces tackle two-sided market problems such as buyer–seller
discovery and supply–demand generation through proprietary services (e.g. analyt-
ics, marketing, customer outreach). However, even though centralized marketplaces
serve a purpose, they have various limitations. From a socio-economic perspective,
exorbitant dataset prices present a barrier-to-entry for data enthusiasts or early-stage
entrepreneurs. From an organizational perspective, existing centralized data market-
places focus on offering static datasets and their data offerings lack diversity—they
focus on specific categories of data (e.g. financial, agricultural, geospatial). Most
relevant to our work, existing centralized marketplaces do not focus on acquiring
real-time data collected by robots or IoT devices. The closest type of data market-
places related to our work are those that focus on selling aerial survey data collected
by UAVs. From a general perspective, we can consider that centralized data market-
places create data silos.

Although various “decentralized” data marketplaces, that leverage blockchain
technology, have emerged, none has yet reached liquidity, and are predominately
reliant on a centralized infrastructure that enables storage and streaming of data.
The “decentralized” nature of these marketplaces is primarily attributed to the use
of smart contracts running on a specific blockchain, and the use of a utility-specific
token—e.g. a token for purchasing or storing data. Furthermore, governance of the
data acquisition protocols is often left up to developers of the platform. Similarly,
data pricing models are initially defined by the developers of the platform or are
broadly based on open-market dynamics. With the increasing deployment of robots
in “the wild”, we imagine a near future where robots may not only populate the
workplace, but also homes, and open environments. This would lead to an increasing
production and collection of data that may be leveraged for various applications
and purposes. Such data could generate monetary revenue for the respective robot
owners or be offered freely. More interestingly, such revenue could go directly to
independent robots that own cryptocurrency (crypto) wallets. This crypto revenue
could be used to interact with decentralized applications (DApps) and to engage in
peer-to-peer transactions with other robots. We further elaborate on this in [3], where
we discuss human–robot interactions and robot-to-robot interactions that take place
when robots can interact with smart contracts and use “money” without third-party
mediation.

This paper presents AutomataDAO, a self-governed decentralized data market-
place for robot and IoT data where both human and robot agents can perform direct
peer-to-peer data transactions. Robot agents or owners of robotic systems can register
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to the DApp marketplace sharing details of the available data streams and schemas.
A buyer can subscribe to a data stream through a DApp and engage in interactive
control of the robot. If a semi-autonomous feature is available, the buyer can iden-
tify points of interest and set navigation waypoints. At each navigation waypoint, the
buyer could validate the data through ourDApp dashboard and continue to pay for the
stream. Rather than performing continuous contract calls, we leverage state channels
to accumulate the state of the interaction, accumulating payments at each waypoint
upon verification of the data. To our knowledge, this application of state channels in
the context of robotics and IoT systems is novel and it is a more optimal solution in
comparison to work presented by existing literature related to IoT-blockchain-based
data marketplaces. Existing literature proposes systems that continuously interact
with the blockchain—making the entire system unsustainable and costly. The latter
could be attributed to the fact that most literature leverages private blockchains for
proof-of-concepts, rather than existing public blockchain, disregarding transaction
fees, and throughput/latency limitations. In our system implementation, the con-
tracts are deployed on Ethermint, which makes the execution of our smart contracts
more economical and faster than on the Ethereum network. The latter further creates
opportunities to interact with other existing blockchains in the Cosmos ecosystem
that may provide additional decentralized data processing capabilities.

The paper is organized as follows: Sect. 2 reviews existing literature on data IoT
marketplaces and decentralized data marketplaces. Section3 discusses our decen-
talized autonomous organization (DAO) smart contracts. Sections4 and 5 briefly
present the pricing models explored in this work and selected use cases for the sys-
tem. Section6 presents a preliminary discussion of our system architecture. Section7
presents our architecture. Section8 provides the implementation details of our sys-
tem. Section9 discusses the limitation and future work of our research. Section10
concludes our paper.

2 Background Work

The confluence of robotics, IoT and blockchain has recently become popular in
academic research and in commercial applications. While numerous companies are
attempting to build blockchain-based data marketplaces, a truly efficient decentral-
ized solution remains elusive. Most projects are either built with inherently central-
ized infrastructure or are not scalable for real-world use. These issues have recently
crossed into the realm of academic research. A number of academic papers have
been written proposing systems that rely on the IOTA platform, which is inherently
centralized due to its coordinator-based architecture [17], but, promotes itself as a
decentralized IoT blockchain [35]. In other literature,“enterprise blockchains” or
“consortium distributed ledgers” such as Hyperledger [19] and Quorum [8] are often
used. Contrary to public blockchains, these are explicitly closed invite-only systems.
Hyperledger and Quorum were, respectively, founded by IBM and JP Morgan, and
later open-sourced. Similarly, a vast literature has proposed IoT systems and data
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marketplaces that use public Ethereum—but, the end-work presented in the literature
uses private network instances of Ethereum to implement proof-of-concepts. Such
work does not account for Ethereum’s scalability issues and expensive transaction
fees, which have recently skyrocketed since the time of the published literature.
On the other hand, work bridging the world of robotics and blockchain is still in its
infancy. Some work simply proposes using a blockchain for decision-making or con-
sensus in distributed robotics, others discuss the well-known benefits of blockchain
and IoT, but in the context of robotic systems. Some recent work explores the applica-
tion of blockchains, smart contracts and cryptocurrencies as it relates to human–robot
interaction (HRI). We further elaborate in the following sections.

2.1 On Centralized and Decentralized Data Marketplaces

A wide range of traditional data marketplaces presently exist. These can be seen as
industry-specific data silos, where data from industries such as health care, auto-
motive, agriculture, finance or retail might end up. References [34, 37, 40] provide
an academic overview on these type of data marketplaces, [9] provides an indus-
try perspective on the opportunities for holistic data marketplaces. Centralized data
marketplaces, like other centralized systems, have the benefits of seamlessly coor-
dinating multiple bespoke parties through direct oversight and strict governance set
by the owners of the marketplace.

The organizational structure and businessmechanics vary across different central-
ized data marketplaces. But, in summary, these function as follows: (a) From a data
provider’s perspective: the provider contacts the marketplace operator(s) to inquire
about selling data. The marketplace engages with the provider, collecting details
about the provider, details about the data and evaluating the data. Then, the provider
is allowed to set the terms and conditions for the use of such data. The marketplace
then either collects/stores the dataset(s) in its infrastructure, or allows the provider
to list the data on the marketplace’s portal—simply acting as a broker. In some data
marketplaces, part of the benefit is the operational and marketing services offered—
e.g. identifying possible buyers, customer outreach and closing deals. (b) From the
buyer’s perspective, the buyer enrolls and may undergo due diligence, gains access
to the marketplace portal, browses through available datasets and can often make a
direct purchase. In some cases, e.g. for sensitive data, the buyer may need to contact
the marketplace and undergo further due diligence.

An example beyond simple data brokerage is presented by AWS Data Exchange
[38]. Direct infrastructure integration and access to millions of AWS customers are
key advantages that allow the AWSData Exchange to streamline data acquisition and
delivery, and to minimize the buyer–seller discovery process. Similar to other data
marketplaces, the AWSData Exchange only allows “qualified” data providers to sell
data, and provides flexibility over the terms and conditions of a transaction. Providers
are able to publish free or paid products under specific terms, or even issue private
offers and custom terms and conditions to specific AWS customers. Additionally,
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similar to other traditional data marketplaces, providers can opt to approve each
subscription based on the intended use case or regulatory compliance (e.g. GDPR)
of the data subscriber.

Over the recent years, there has been an emergence of “decentralized” data mar-
ketplaces that aim to democratize data and allowmonetization of data by the masses.
These include projects with multi-million dollar marketc.aps such as Streamr [41],
Ocean Protocol [15] and IOTA [20]—presently with a billion dollar marketc.ap, as
well as early blockchain-based datamarketplace platforms such asDatum [16]whose
marketc.ap has dropped below the $1million and development has begun to stagnate,
as noted by GitHub commits. There are also various academic works that explore
data marketplaces in the context of IoT, cf. e.g. [1, 31, 36, 43, 45]. Such academic
literature and other present proof-of-concept systems that leverage either private
network instances of Ethereum or consortium-distributed ledgers, and in particular
propose the use of cryptographic receipts that represent data transactions.

For the most part, in publicly funded data marketplace projects, the basis of
“decentralizatio” is solely based on their application of smart contracts. For example,
Streamr relies on a set of Ethereum smart contracts for payments and data permission.
Additionally, an ERC-20 standard token, is used for settlement and to incentivize
a data transport network to provide enough bandwidth. The underlying means to
transfer or stream the data are still structurally centralized, as nodes within the net-
work are incentivized to run on cloud service providers such as AWS. On the other
hand, Ocean Protocol runs a proof-of-authority network where their smart contracts
are deployed. Unlike other decentralized blockchain data projects, Ocean Protocol
provides a generalized and modular smart contract framework, and has implemented
a DID smart contract framework called Keeper contracts. Datum simply leverages
smart contracts to process the purchase of data—but, future roadmapmilestones dis-
cuss the development of the Datum blockchain to overcome Ethereum’s drawback,
and the development of a storage network. Beyond projects focused on becoming
data marketplaces, other multi-million marketc.ap IoT-focused blockchain projects,
such as IoTeX [42], propose the implementation of data marketplaces that integrate
into their blockchain.

2.2 IoT and Blockchain Technology

At its core, the concept of the Internet of Things (IoT) is about interconnecting every-
day physical objects and allowing them to access internet services [30]. Since the
early 1990s, there has been a growth in smart devices and networking technologies
aimed at turning the vision of IoT into reality. But, although a lot of progress has
been made, even to this day the Internet of Things is faced with various technical
and social questions. Some of these include technical questions over secure commu-
nication between IoT devices, protocol standardization and requirements over stan-
dard identity and authentication solutions [18, 24]. There are also various questions
related to IoT data. These include questions over data collection practices employed
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by devices, the integrity of data as it is shared between devices and services, and
hard guarantees over the provenance of data [12]. One approach towards improving
data provenance is to allow an IoT device to have a decentralized identity (DID) and
allowing it to sign its own transactions, as discussed in [23] and as discussed in the
context of robotics in [3].

In [7], the authors outline five categories of use cases for IoT and blockchain:
(1) data storage management, (2) trade of goods and data, (3) identity management,
(4) rating systems, (5) other. Part of these use cases can be seen addressed in [33]
that presents the design and implementation of an IoT network leveraging LoRA
gateways and the concept of “smart proxies” or relay servers that communicate with
the blockchain. Similar to other work, the latter uses a private Ethereum network for
its proof-of-concept. For the most part, existing literature on IoT and blockchain
remains pigeonholed on the application of private, permissioned or consortium-
distributed ledgers, instead of the use of public blockchains. In general, the core
reason behind this is the computational requirements of running full nodes or light
clients on lo-power wide area (LPWA) networks that allow low-power IoT devices
to connect and communicate efficiently with minimal power costs. Additionally,
IoT-blockchain literature makes the same case against public blockchains, as other
existing literature—throughput/latency limitations, and volatile transaction costs. In
this work, we address this by leveraging state channel technology and minimizing
the number of on-chain calls.

2.3 Decentralized IoT Data Marketplaces

An extension of the latter ideas is to allow data produced by IoT devices to be sold in
an open “decentralized”marketplace. Existing literature such as [31, 45] highlight the
application of smart contracts for access management and micropayments. Similar
to the literature mentioned prior, the actual systems have been implemented using
private networks. This is once again, is due to some of the constraints of existing
public blockchains such as (1) transaction throughput, (2) block finality and (3)
transaction costs.

To elaborate, as of this writing, the Ethereum blockchain supports 15 transactions
per second (TPS) and its proof-of-work consensus leads to probabilistic finality—on
average it is recommended to use 20–25 block confirmations to prevent a double-
spend attack.Additionally, transaction fees (gas) have increased from9.898 to 480.10
Gwei, or approximately 48.50 times, from January 16 to September 2. Although
other public blockchains exist, our work leverages Etheremint, an Ethereum Virtual
Machine implementation built with Tendermint consensus [25]. The use of Ether-
mint allows us to seamlessly deploy Solidity smart contracts and leverage existing
Ethereum tooling. Prior work explored the sole use of the public Ethereum network
as it is one of the most established public blockchains, and it’s underlying technology
more decentralized than others, e.g. EOS [44].
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Other work such as [1] not only focuses on recording payment transactions on
the blockchain, but also on using the blockchain to store data offerings through a
smart contract. This approach is unsustainable given the volatility of transaction
fees, and the requirement to store data offerings on-chain—considering that offering
information is subject to change according to the growth of data sources. Other efforts
such as [32] present data marketplaces that focus on on-demand crowdsensing—
whereby a buyer can make on-demand requests for a specific type of data and the
“crowds” (equipped with IoT/smart devices) could collaboratively respond to data
requests. In comparison to other academic literature, the latter proposes running a
network of market operators that maintain the notion of a marketplace and interact
with data consumers—no further implementation details are provided. Work such as
[31] and [45] develop data marketplace on IOTA and present the same ideas from
IoT-blockchain work discussed prior.

2.4 Robots and Blockchain Technology

As part of the Internet of Things, mobile robotic systems present ample opportunities
for the collection and application of data. Current literature explores the application of
blockchain technology across different verticals in robotics. In [3], the authors present
a holistic view into using smart contracts to create cypherphysical collaborative
games between humans and robots, and to assess the novel interactions afforded
when a robot canmake unmediated physical payments and enter into agreementswith
humans. Overall, this human–robot interaction perspective proposes studying the
social and psychological impact of robot–human peer-to-peer financial transactions
and agreements. Other work, such as [5] proposes the use of a blockchain as a means
to coordinate a swarm of robots through decision-making/voting taking place on the
blockchain. Similarly, [29] propose a similar concept except that it focuses on storing
robot events on a Tezos-based consortium blockchain. Other work such as [39] and
[22] proposes a utility-token-based protocol to manage robot activity. This type of
work on “coordinating” various agents andmanaging the state of an “interaction” can
be seen as similar to previous IoT-related work, except that rather than coordinating
thousands of devices the authorsmake the premise of using a blockchain to coordinate
a swarm of robots. In the case of managing interactions, the authors’ goals are to
record data transactions or record control of the robot on a blockchain. The latter
can be compared to record the interactions that take place between IoT devices and
internet services.

Overall, the use of a fully fledged proof-of-work blockchain, or even a private
blockchain, can be seen as an overkill for such a task of coordinate multiple agents.
A simpler approach could be taken by solely leveraging modular consensus pro-
tocols such as Tendermint [25], which is the core consensus protocol in Cosmos
[26]. Another argument against the plain and simple use of a blockchain for direct
robot coordination and communication is that continuous communication via smart
contract calls is often unnecessary and costly if ran on a public ledger. A different
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and more efficient approach would be to use state channels, as presented in this
paper. Other ongoing works such as [13] can be seen as also applying the lessons and
concepts from IoT-blockchain research. In particular, the paper uses a blockchain to
generate and store cryptographic receipts of data transactions—but, instead of the
receipts being linked to IoT data access, reads and writes it focus on linking the cryp-
tographic receipts to data collected/stored during robot therapy—hence achieving the
properties of security and auditabilty.

2.5 State Channels and Micropayments

Astate channel is a blockchain scaling solution andgeneralizationofwhat is knownas
a payment channel, this conceptwas presented in [21]. It came about due to the lack of
network throughput and high transactional fees. The fundamental idea is thatmultiple
payments between two users can occur sequentially outside of a blockchain ledger
(off-chain) until a given deadline when the resulting balance updates are committed
to a digital ledger. These individual payments, often called micropayments, are not
recorded in the given blockchain; instead, only the final balance update is recorded in
the blockchain at the end of the interaction. In essence, the concept of a state channel
allows for a single transaction to process a whole series of payments, and for these
individual micropayments to occur nearly instantaneously—given the underlying
communication scheme later discussed in Sects. 7.1 and 8.1.

A payment channel between two parties is initialized by a deposit of funds from at
least one party into a smart contract to be held in escrow for a given time period. This
initial balance can be sent from one party to another. Balance updates are determined
by the digital signatures of the two parties involved. The party making the payments
provides the receiving party a series of signed messages, one for each incremental
balance update between them. After a given amount of time, the channel will end
and the receiving party will submit the latest signed balance from the sending party
along with their own signature of the final balance. This will trigger a payment
to the second party from a smart contract that had been holding funds in escrow.
If consensus between parties is not reached by the deadline the original escrow is
returned.

The efficiency of state channels can be expanded by the use of network routing
and smart contracts to create what are known as payment networks. Payments can
be routed through intermediary connections so that two users who have not estab-
lished a state channel connection can still send offline payments to each other. This
significantly reduces network fees and increases transaction speeds. Payments can
be secured through the use of a series of hash lock time contracts [21] between par-
ties which ensure intermediaries are incentivized to relay funds to the end user by
locking fees until the transfer is finished. Another routing method known as virtual
channels has been proposed by [11], which claims to increase network efficiency by
eliminating the need for direct payment relays.
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This basic methodology has been advanced to applications more complex than
simply payments. Rather than merely updating payment balances users can make
agreements on the state of “generalized smart contracts”. These smart contracts
essentially function outside of the primary blockchain the state channel is built for.
Implementations of generalized state channels are currently being developed byCeler
Network [14] and state channels [6].

2.6 Decentralized Autonomous Organizations (DAO)

The concept of a Decentralized Autonomous Organization (DAO) is presented as a
superset of the concept of a Decentralized Autonomous Corporation (DAC) in [2]. A
DAC, originally being a term coined by Larimer in 2013 [28]. They have traditionally
been used to allocate funding by democratic consensus through a series of proposals
and voting rounds. Voting is restricted to DAO participants. Token ownership and
reputation scores are the two primary mechanisms through which voting access is
mediated. Overall, a DAO is implemented as a set of smart contracts that hold the
governance logic and token distribution information.

3 Marketplace DAOs and Collective Robot Ownership

We propose the implementation of a marketplace for robot data as a decentralized
autonomous organization (DAO), where both robot and human agents can participate
in governance. Nearly, all aspects of robot operations can be determined by group
consensus. Proposals and votes by DAO participants can determine where a robot
operates, which services it provides, and the fees it charges to data consumers. Total
marketplace revenue for any number of robots can be split among participants allow-
ing for collective ownership and investment. Our marketplace smart contracts allow
for DAOs to be integrated in a modular manner for any robot provider. This permits
unique governance structures for each robot or group of robots. This architecture is
explained in Sect. 7, however, the implementation details of the possible DAO smart
contracts are beyond the scope of this paper, more details can be found in [27].

4 Pricing Model

We focus on two specific types of pricing models: (1) time-dependent pricing and
(2) volume-dependent pricing. Time-dependent pricing is compatible with our smart
contract/state channel framework as it assumes that a real-time or close to real-time
data stream is more valuable if it is continuous. For example, if a mobile robot is
surveying foot traffic at a shopping centre having gaps in the data stream would
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Fig. 1 DAO interaction overview

be undesirable. On the contrary, volume-dependent pricing assumes that the buyer
is comfortable with gaps of missing data during the stream and overall pays for a
specific quantity of ingested data.

5 Interaction Use Cases

Below we discuss a set of use cases supported by our DAO and data marketplace
smart contracts. In particular, we consider two types of control/ownership models
for robotic systems. The first one is an independent control/independent ownership
model. The second one is a master–slave control/collective ownership model. In the
former, we assume that robots are independent self-sufficient agents with a high
degree of autonomy. In this configuration, a robot possesses a wallet, has sufficient
computational and storage capacity and can interact with the digital world on its own.
The latter model assumes that multiple robots are controlled or owned by a single
entity. This is similar to a master–slave model or a Robot-as-a-Service (RaaS) busi-
ness model, where a service provider may hire multiple independent robots for data
collection tasks. In this configuration, the service provider (master) coordinates a set
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of robots and signs any blockchain transactions related to payments or governance
of the DAO. In a real-world application, we expect that the second configuration
would be most suitable since the service provider can scale the underlying infras-
tructure to achieve desirable system properties (e.g. low-latency, high-throughput
data streaming).

5.1 Offloading Data Collection Capacity

Similar to traffic offloading in network routing, independent robots may need to
offload the performance of a data collection service to other robots. This could
be due to various reasons such as form factor constraints that may limit the robot
to adequately navigate a complex environment, or perhaps an anticipated com-
ponent failure (e.g. battery failure). In such a scenario, a robot can transfer the
performance liability to another robot that is capable of carrying out the
data collection service. In practice, this use case can be carried by networked robots
that can share navigation plans, andwould require a robot to share state representation
of the service being carried out. In future scenarios, we can imagine the implemen-
tation of performance bonds, either as a collateral deposit made by the robot
or central service provider, or a smart-contract-based surety bond.

5.2 Proxied Data Collection Using Master–Slave Control
Model

In this interaction, a central entity (either human or robotic) acts as a service provider
that handles all data andpayment transactions onbehalf of the actual robot performing
the data collection tasks. This sort of interaction could take place when we consider
robotic systems that are constrained to local networks, or robots that are present on a
rental basis—i.e. Robot-as-a-Service. From an implementation perspective, the ser-
vice provider relays all data transactions and interacts directly with a state channel to
receive payment—this is contrary to a robot directly streaming the data to a consumer
and directly receiving payments. In a Robot-as-a-Service model where the service
provider rents or hires independent robots, payments are distributed dynamically
through the smart contracts.

5.3 Collaborative Data Collection by Independent Agents

In a more interesting scenario, a data buyer may purchase a data stream from a
single robot and the robot may opt to collaborate with other robots and share the
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revenue from selling such data stream. This is applicable to scenarios where a single
drone may be tasked with surveying an environment and may request other drones
to collaborate in the data collection task.

6 System Preliminaries

Figure2 presents a high-level architecture of our system. The data and communica-
tion pipeline is based on two assumptions: (1) Robots may be resource constrained.
Meaning that not all robots may support high bandwidth data transactions or have
extensive computational power available. (2) Robots may be constrained to local
networks. This may be due to security requirements or limitations on software archi-
tecture.

6.1 Robot Constraints

The first assumption is similar to that in the IoT world. In robots, the form factor may
constrain introducing additional hardware. Additionally, a robot’s internal computa-
tional or network requirements may limit the robot from sharing such resources to
process or stream data. An example of this is a drone (UAV) equipped with a set of
cameras performing Visual Simultaneous Localization and Mapping (SLAM). The
goal of SLAM is to continuously estimate the position of the robot in 3D space while
constructing a 3D map during navigation. There are many ways to perform SLAM,
but in Visual SLAM the robot relies solely on cameras. Although, this is the preferred
method for UAVs, processing camera feeds requires extensive computations which
in turn increase the amount of power needed. In turn, performing additional compu-
tations can increase power demands, which would then require additional batteries
that add weight to the vehicle and offset its performance. Hence, UAVs and other
similar robots are resource constrained. A similar constrained can be considered
for affordable commercial robots that are not equipped with high-end processors,
but which instead may run computations on an edge computing device. The second
assumption considers that present commercial robotic systems do not always con-
nect to the Internet. This could due to limited functionality or privacy and security
measurements. Instead, robots are connected to local networks—some leveraging
a popular open-source framework and middleware called Robot Operating System
(ROS). It is worthy to note that even when some robots are solely connected to a
local network, they may be subject to attacks—as discussed in [10]. This is often
due to misconfigurations in the network and or known issues within the middleware
leveraged by the robots.
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Fig. 2 High-level system architecture

6.2 Data Schemas, Evolution and Compatability

From the data buyer side, we assume that the buyer has agreed to a given data schema,
which can be used as part of data validation checkpoints when the buyer receives
the streaming data. This process is similar to the use of data schemas (e.g. Avro,
ORC) in a traditional data pipeline of a distributed/big data system. In our present
implementation, we simply define schemas in JSON format and share the schema
prior. To elaborate, we do not make use of a centralized schema registry. Instead,
the schema is initially shared between the data provider and the buyer prior to the
purchase. During the state channel initialization step, a hash of the schema is recorded
on-chain which serves as an identifier of the data and can also help in future work
related to dispute resolution. In future work, we plan to integrate Avro or Protocol
Buffers to serialize and deserialize the data being streamed.

7 Architecture

Figure2 presents a high-level architecture of our system.
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7.1 Data Marketplace Smart Contracts and State Channels

Robot owners register by providing a unique DID identifier, an address for state
channel signatures and an address to receive payments. Each provider has a mapping
that stores state channel initialization for each unique user address by using the
user address and a unique agreement id as keys. This allows users to register for
multiple services concurrently. Each service is represented as a struct with a bytes32
representing a hash of the service agreement details, a nonce which is necessary for
state channel update security, a timeout for when the channel will close which is
formatted in Unix time and a value which is the maximum payout that can be paid
to the service provider.

The ERC-20 token standard will be utilized for payments. A token deposit must
be made by the consumer before registration. This is done by calling the user deposit
function. This transfers tokens into the marketplace smart contract and adds the
equivalent value to a global spending balances mapping. This balance can be spent
by the user on any service. Users can register for services with Providers by signing
an agreement that initializes a state channel for service payment. The is done in the
registerForService function which takes signatures from the provider signer
address and the user, along with the initial service details. It verifies the signatures
match the hash of the service details provided then commits the service to memory.
The value associated with any registered service is locked and deducted from the
global spending balance.

After a given series of transactions, a service state channel can be updated to
send payment to the provider through the commitServiceUpdate function. This
function takes signatures from the provider and user, and checks when they are valid
signatures of the hash of a bytes32 update_state concatenated with a withdraw
value. If this condition is valid payment is withdrawn and sent to the Provider receiver
address. If a consensus is not reached, the user can wait until the timeout date is
reached and withdraw their deposit by calling the withdrawServiceDeposit
function passing the correct bytes32 identifier for that service agreement.

7.2 Data Streaming

Datamanagement workflow for real-time/streaming data are based around the notion
of data contracts, whereby one party can agree to the shape or structure of the data
and other parties can development systems that ingest, process or analyse such data
based on such structure. On the other hand, big data systems like Data Lakes are on
ingesting both structure and unstructured data and applying the respective schema
on-read. Prior to making a purchase, a buyer requests a data stream’s schema. This is
requested through theData Proxy Servicewhich queries aROS topic that contains the
data stream that will be sold. If the buyer approves the data schema and a purchase is
made, the robot will be notified through a smart contract event. In the case of a robot
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Fig. 3 Transaction sequence diagram

that has enough capacity to streamdata, the datawill be shared through a direct socket
connection to the buyer. As the data flows through, the buyer uses a Data Analysis
Module to verify the integrity of the data—this is a type of checkpoint performed
at different times based on whether the buyer is purchasing a time-dependent data
stream or a volume-dependent data stream. In either way, this resembles the same
concept used in a big data pipeline where the producer and consumer of data can
check the data against the schema both parties have agreed on. Section8.3 elaborates
on the implementation details. Listing 1.1 presents a sample data schema.

8 System Implementation

8.1 Smart Contracts and State Channels

The smart contracts are written in Solidity and deployed an Ethermint. Ethermint is
an implementation of the Ethereum Virtual Machine (EVM) built on top of the Ten-
dermint consensus engine.Multiple Ethermint nodes comprise an Ethermint Cosmos
Zone—a proof-of-stake blockchain. Ethermint allows Solidity smart contracts to be
deployed to this Zone and enables the use of Ethereum development tools. Appendix
listing 1.2 presents an overview of the smart contract marketplace. The base mar-
ketplace contracts offer significant flexibility in terms of governance. The behaviour
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of each robot marketplace provider can be governed by a separate DAO contract as
the receiver address in the provider struct can be a contract. This allows a group
of individuals to hold and distribute the robot service fees collectively. The DAO
contract could also govern and change the signer address used to initialize service
agreements. This allows for granular control over the possible services offered as all
the service details are determined by the signer. In addition to lower transaction costs,
the state channel implementation offers an important safeguard against fraud which
can be prevalent in trust-less systems. By splitting services into micropayments, the
potential loss for a provider given a non-paying user is only the amount of one sub-
payment. After not receiving that payment the provider will cease the service to not
lose anymore. Thus the smaller the individual sub-payments the less risk there is
to the provider. This is true for consumers too. They are not obligated to pay until
they received accurate data as they always have the option to wait until the state
channel agreement times out. The state channel signature transfer is implemented
using secure WebSockets over OpenSSL.

8.2 Robot and Smart Contract Communication

ROS middleware and packages were used internally to operate a Turtlebot 2 mobile
robot, and a set of Parrot AR drones each equipped with a Raspberry PI that runs a
ROS node with visual SLAM packages. The Turtlebot was used to simulate direct
teleoperation and represented an independent robot. The computer operating the
Turtlebot had an Intel Core i7 processor, with 16GB Memory, an NVIDIA GeForce
RTX 2060 GPU, and 1TB SSD. This allowed the robot to: (1) support a light client,
(2) run a web3 event listener that monitor smart contract calls and (3) stream data
directly to a consumer. Details regarding data streaming, caching and the service
proxy are discussed next. The drones were used to simulate a collective control
model, where drones receive specific control commands from an edge computing
device—a computer with the same specs as the Turtlebot’s computer.

8.3 Data Streaming and Processing

Twosystemconfigurationswere discussed at the beginningofSect. 5: (1) independent
control/ownership, and (2) collective control/ownership. In the first configuration, a
robot with self-ownership or unilateral control should have the computational and
storage capacity to process data. The second configurationmirrors that of a consumer-
facing service provider that manages a single or multiple robot agents. As a service
provider, this entity can deploy or control multiple robots to perform data collec-
tion/sensing tasks—the service provider holds the performance liability of
the data collection tasks. There are twomore granular interactions that can take place
within this configuration: (a) independent robots can be employed by the consumer-
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facing service provider, or (b) the service provider owns the robots. In the case of (a),
the service provider is in charge of paying the robot(s) involved in a task, according.
The distribution of the payments could be automated via the smart contracts where
the payment is unlocked once the robot has completed a service task. In the case of
(a), the service provider is the sole entity that receives the payment.

In the first configuration, we developed a ROS Kafka adpater and hosted a
single broker Kafka cluster. This allows the robot to collect ROS messages in Kafka,
which can then be sent to the data buyer through Kafka Proxy Service hosted on
the robot itself. We use Kafka for three reason: (1) it is a lightweight messaging
queue that could be used as temporary storage, (2) publish-subscribe communica-
tion protocol is similar to that of ROS’ publish-subscribe node communication, (3)
because it is distributed we can simulate a scenario of a two or three broker cluster
where each broker is hosted on separate computers within the robot. Multi-computer
robot architectures are often used in computational intensive robots, e.g. self-driving
vehicles and humanoids. Furthermore, the use of Kafka allows us to perform schema
validation prior to the Kafka producer publishing data. One key challenge which we
explore in our future work is decentralization of a schema registry rather than relying
on a centralized repository or instead of having the robot first send the schema to the
data buyer prior to a purchase.

The data streaming implementation for the second configuration (collective/con-
trol ownership) is an extension of the implementation described for the first configu-
ration. In essence, the service provider could host an edge computing device, where a
single or multiple robots would send their data to. The edge computing device would
then proxy the data to the data buyer. Since the service provider either manages a
single or multiple robots they can all be connected to a local network and simply
leverage ROS to publish the data collected as individual topic-basedmessages, which
then the edge computing device would subscribe to and send to the data buyer. We
provide further details on a robot data lake implementation in [4].

9 Limitations and Future Work

In the present implementation, a data stream’s schema is shared by the robot prior
to the purchase of a data stream. A different approach that was tested was the imple-
mentation of a schema registry. Having the robot share the schema adds an additional
step to the interaction. On the other hand, schema registries are centralized. One way
that a schema registry can be decentralized is by storing the schemas and metadata
in a decentralized storage solution.

Presently, we use Ethermint for its value proposition against Ethereum. But, it
is still under development and various features are still missing, e.g. it presently
only supports an RPC endpoint and not WebSocket connection hence we are unable
to directly subscribe to events. Another thing to consider is that, as a proof-of-stake
blockchain, Ethermint requires active validators—presently Ethermint has not beeen
deployed as a zone.
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Another item to consider is that this work does not address open-market pricing
models or considers an extensive reputation system. Future works explore such repu-
tation system(s) and presents dispute resolution and/or arbitration mechanisms—i.e.
when the buyer believes the integrity of the data does not meet certain requirements
outside of the scope of the schema. Overall, open-market pricing models are compli-
cated topics. Existing smart data pricing (SDP) literature makes assumptions about
the data providers and consumers’ identity, or assume that they are driven by mon-
etary incentives. Literature is yet to address scenarios where fully anonymous or
pseudo-anonymous data providers and data consumers are involved.

Further work on our state channel implementation is also required. We look
towards Celer Network’s [14] implementation and may leverage it in our future
research. Lastly, research on decentralized governance models that allow both
humans and robotic systems to partake in is necessary. As well as research on the
tokenization of robotic systems, essentially turning them into fungible assets whose
price is equivalent to its value production. Further references to this work can be
found in [3].

10 Conclusion

We demonstrated how a truly trust-less marketplace can operate for robots within the
limitations of current blockchain technology. We showed how state channels can be
used to bothminimize trust and transaction fees.Wepresented a simplemodular smart
contract framework as the backbone of this system allowing for the implementation
of a number of different governance systems in robot ownership. We illustrated a
few possibilities based on the architectures of previous decentralized autonomous
systems.

The implementation is based onSolidity smart contracts deployed on anEthermint
network, this allows for higher transactional throughput and reduced transactional
fees, and creates further opportunities to integrate into the Cosmos Network ecosys-
tem and interact with other Zones (sidechains) that can provide additional services
such as decentralized private compute. Streaming of data is performed peer-to-peer
removing the need for a centralized broker, and two purchasing models are imple-
mented. The first purchasing model is time dependent, whereby the data buyer/con-
sumer only pays for the time it has consumed a data stream. This is implemented
by validating the data at different temporal checkpoints and aggregating payments
through a state channel. If the data is invalid, no payment is made to the robot/service
provider after the invalid data checkpoint. This “pay-as-you-go” model safeguards
the buyer against data streams, whose integrity has decreased purposely by a mali-
cious actor (robot) or unintentionally—if a robot failure takes place. This is also
useful when the continuity of a data stream is a core requirement The second pur-
chasing model is volume based, whereby the data buyer purchases a stream and pays
for a given total size of ingested data. This is also implemented using state channels,
whereby the robot reports how much data is has produced and the buyer reports how
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much it has consumed. Our smart contract framework also accounts for scenarios,
where the robot may need to offload the service task to other robots, hence a payment
for the data collection service may need to be split accordingly.

An initial implementation of AutomataDAOwas presented at the 2020 ETHDen-
ver conference and was awarded first prize in the Cosmos Network development
track. Further implementation details, in particular, related to the DAO are discussed
in [27] and in future papers.

Acknowledgements The authors thankAntoineDeVuyst andBrandonWest for their contributions
during the development of the initial implementation of AutomataDAO. As well as thank Cosmos
Network for their award at the 2020 ETH Denver conference.

Appendix: Sample Data Schema

{
"type": "record" ,
"name": "weather" ,
" fields ": [

{"name": "name" , "type": "string" }
, {"name": "temperature" , "type": " float " }
, {"name": "timestamp" , "type": "string " , "default ": null}

]
}

Listing 2.1 Sample Data Schema

Appendix: Smart Contract Overview

pragma solidity >=0.4.22 <0.7.0;

/∗∗
∗ @title Storage
∗ @dev Store & retreive value in a variable
∗/
contract Storage {

mapping (uint => Provider) public Providers ;
public uint totalProvider ;

struct service {
bytes32 state ;
uint nonce;
uint timeout ;
uint value ;

};
struct Provider {

bytes32 DID;
address receiver ;
address signer ;
mapping(address=>mapping(bytes32=>service )) ServiceStates ;

};
/∗∗
∗ @dev Store value in variable
∗ @param num value to store
∗/
function addProvider(
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bytes32 _DID
, address _receiver
, address _signer) { . . . }

/∗∗
∗/
function registerForService (

bytes32 service_sig0
, bytes32 service_sig1
, bytes32 intial ly_state
, address _user
, bytes32 provider
, uint timeout
, uint value ) { . . . }

/∗∗
∗/
function commitServiceUpdate(

bytes32 state_sig0
, bytes32 state_sig1
, bytes32 update_state
, address _user
, bytes32 provider
, bytes32 service
, uint value) { . . . }

/∗∗
∗/
function withdrawDeposit(
bytes32 service ) { . . . }

}

Listing 2.2 Smart Contract Interface
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