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ABSTRACT 
With recent advances in computer and sensor technologies in the 
last few decades, the use of robots for various applications has 
increased enormously. The reliability of robots depends on the 
minimization of component failures and downtime. To improve 
the reliability, periodic monitoring of components and their 
behavior are essential to inference component fatigue and 
potential breakdowns.  

Since fully autonomous robots are very expensive, telepresence 
robots are affordable for mass scale deployment and can be 
controlled by a trained human operator like avatars. To increase 
the efficiency and to reduce the downtime of telepresence robot 
service, it is essential to observe the various commands performed 
on the robot and to analyze the samples of component status over 
a long period.  

We propose an efficient data driven model with a collection of 
frequent time-stamped data from various components of a 
telepresence robot and predict potential failure warnings. The 
collected historical datasets are analyzed to determine an accurate 
machine learning model for increased failure prediction of 
components. Analysis of this large collection of data will be 
performed on a cloud computing platform to alleviate the 
computational load on telepresence robots. With the incoming 
temporal data, this machine learning model predicts the 
component status and probability of failure in real-time. 

Potential Applications of the proposed approach also includes 
detection of component malfunction, estimating the degree of 
movement of various components for satisfactory level of 
performance, and migration of workload among multiple 
telepresence robots in a team work environment.  
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1. INTRODUCTION 
With recent advances in computer and sensor technologies in 

the last few decades, the use of robots for various applications 
have increased enormously. Globally, many research 

organizations are concentrating in research and development of 
various types of robots based on their requirements and 
applications. Telepresence robotics is one such area of robotics 
that allows human controllers to remotely operate through a real-
time multimedia interface in wireless mode. Remote teleoperation 
of advanced robotic technologies has great potential in many 
areas, including applications in education, deep sea exploration 
[1] explosive mine removal, hazardous environments [2] off-shore 
projects [3], space explorations [4], etc. 

Scheduled maintenance in such robotic system is widely used 
to ensure that equipment is operating correctly so as to avoid 
unexpected breakdowns. Such maintenance is often carried out 
separately for every component, based on its usage or simply on 
some fixed schedule. However, scheduled maintenance is labor-
intensive and ineffective in identifying problems that develop 
between technician's visits. Unforeseen failures still frequently 
occur. In contrast, predictive failure techniques help determine the 
run-time condition of components in order to predict when and 
what repairs should be performed. The main goal of predictive 
failure is to prevent unexpected equipment failures. 

Predictive failure requires insight into the dynamics of operational 
components. This can be gained by adding sensors to components 
for recording and monitoring of signals of interest (such as 
temperature and voltage). Sensor data log with time stamp 
information will provide further understanding of a working 
component. Most of the components are usually operated via 
software. For example, in case of Telepresence Robot, all device 
operations, from body movement to usage of battery power, are 
controlled by various applications. These applications record 
operation logs. Theoretically, one can trace back how a 
component was used by analyzing all its associated logs. Mining 
such rich information can help in detecting potential issues like 
component failures in advance. A good technique in this area can 
lower the costs of damage, improve security and reduce the 
number of unnecessary maintenance service. 

2. PROPOSED METHODOLOGY 
The use of component logs to predict failures poses many 
challenges and has not yet been fully explored. Since logs are 
mainly used for debugging purposes, they (i) rarely contain 
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explicit information for failure prediction; (ii) contain 
heterogeneous data including symbolic sequence, numeric, time 
series and categorical variables; and (iii) contain massive amounts 
of data, posing computational challenges. Before the data can be 
analyzed, it must be determined how the data can be acquired, 
what kind of data is accessible, and which format it takes. This 
data acquisition process is discussed in section 2.1. After the 
acquisition of data, features need to be extracted from the raw data 
which is known as feature engineering that involves signal 
processing, presented in section 2.2. For the feature analysis, the 
relationship between given input and expected output must be 
established through data labeling techniques as described in 
section 2.3.   Finally, a set of machine learning (ML) techniques 
that analyzes the features and predict component failures as 
outlined in section 2.4. The workflow model for these four phases 
is shown in Figure 1. 

 
Figure 1. Workflow of the proposed model 

2.1 Data Acquisition 
2.1.1 Types of data 
The two most important types of data for component failure 
prediction are sensor data from sensors and event data from log 
files. 

Sensor data 
In recent years, sensors have become smarter, smaller, easier to 
implement in existing systems, as well as cheaper and more 
reliable [5]. A sensor converts physical values into electrical 
values (voltage, current or resistance). Usually, a sensor measures 
a mechanical value; for example, the mechanical values of 
acceleration, pressure, flow, torque or force. With this mechanical 
value, one can interpret the vibration data, acoustic data, 
temperature, altitude, etc. 

Log-files 
Events of a system can be recorded to a log file with time-stamp. 
In this manner, the declaration of an event is very broad. For 
instance, an event could be component breakdown, replacement, 
maintenance service, etc. Descriptive log files can be written by 
humans describing maintenance actions, or any failures or errors 
detected. 

To make use of log data, we first have to interpret the logs, filter 
out a large amount of noise (i.e. data irrelevant to our goal) and 
extract predictive features. Next, we have to collect known failure 
cases for learning/evaluating models. Then, we have to apply 
machine learning techniques to accurately predict component 
failures. And finally, we have to choose the best Machine 
Learning model by choosing appropriate evaluation strategies. 

2.1.2 Data Acquisition Technique 
Data can be collected through either pull-based (polling at 
periodic intervals) or push-based (when event occurs). 

Time Interval 
Time interval data acquisition system sends the acquired data at 
periodic time intervals. This type of system is used when 
communication costs are high. In some cases, it is necessary to 
have synchronized clocks with the communication partner. They 
have to determine an interface for how and what data have to be 
exchanged. Such interfaces can differ, from being very abstract 
(i.e., all values will be transferred) to very special (transfer a value 
only when a constraint is fulfilled). 

Event Driven 
The event driven data acquisition technique is a push-based 
approach. Such systems are also called publisher/subscriber 
systems [6], because the user of such systems subscribes to a 
publisher of events. In our case, a subscription is a definition of 
behavior of the real-world system that the user wants to observe. 
The data acquisition system publishes the value changes detected 
(called Event) and sends them to all registered users. 

2.2 Feature Engineering 
For most failure type detection and predictive maintenance 
applications, the values obtained from the data acquisition system 
must typically be preprocessed before transforming them into the 
predictive features for improved accuracy of the machine learning 
algorithm. The most important processing of the feature 
engineering for failure detection as shown in Figure 2 with the 
following stages: i) Signal Processing: The interpretation, 
generation and transformation of raw unprocessed data, ii) Feature 
Selection: Selection of the most representative features, and iii)  
Feature Extraction: Generation of new information by combining 
features. 

 
Figure 2. Feature engineering process 

 

2.2.1 Signal Processing 
A training set is initially extracted from the acquired data set for 
building the ML models. Since the performance of a classifier is 
directly influenced by the quality of its training data set, the 
presence of noise in the training data may affect its performance, 
decrease its accuracy, and increase its complexity [7]. 

Two different combinations of the classifiers results are 
considered. The first is majority voting, in which an example is 
noisy if the majority of the predictions made by the combined 
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classifiers is not in accordance to its recorded label. The second 
considers a consensus of the predictions, by which an example is 
considered noisy if all classifiers make erroneous classifications 
for it. 

Since there are four classifiers being combined for noise 
detection, a data item is considered noisy by consensus only if it is 
misclassified by all four classifiers. Similarly in majority voting, a 
data item is noisy if at least three classifiers make incorrect 
predictions for it. 

After the noise is identified, the associated data can be processed 
in the following two ways. The first approach removes noisy data 
from the training data set. The second approach reclassifies the 
noisy data with new class labels. The new class will be the one,  
that will be predicted by most of the noise-detection classifiers. 

2.2.2 Feature Selection 
To select appropriate features, we will use Principal Component 
Analysis (PCA) which is an orthogonal transformation technique 
that converts a set of features into a set of linear uncorrelated 
features, called principal components. The assumption of the PCA 
is that features with the largest variance have the largest 
informative content. The samples are centered and rotated in 
accordance to most relevant features. The outcome of the PCA 
yields the features with the largest variance that are orthogonal to 
one another. 

2.2.3 Feature Extraction 
Feature selection picks a subset of the most representative 
features, whereas feature extraction derives new information from 
original features. Feature extraction can be a non-linear process, 
and thus the results are not self-explanatory. An advantage of 
feature extraction over feature selection is that the features can be 
reduced to a much greater extent. We will try with different 
combination of the feature extractions and will check which 
combination gives the best accuracy. 

2.3 Data Labelling 
For supervised learning, historical data is needed which has to be 
labeled. Machine learning approaches can create relationships 
between the input feature vector and the class labels. 

ML can distinguish between classification and regression. 
Classification means that an output variable is discretized to a 
defined class labels. Regression means that an output variable 
takes on continuous values. The state-driven data labeling 
technique is used for classification in component failure 
prediction. 

State Driven Data Labeling 
The state-driven data labeling technique labels the historic data 
into different states. There are two different types of states in 
component failure detection: 

• Failure type state 
• Lifetime state 

A component can have one or more failure types. A failure type 
can also depend on the consequences of other preceding failure 
(see Figure 3). The lifetime state is usually equally distributed 
over the lifetime of a component as illustrated in Figure 4. 
 

 
Figure 3. State machine for failure type detection 

 
According to recent literature, the historic data with logged failure 
types is needed for detecting these different failure types. This 
implies that every failure type must occur in the historic data, and 
the more often it occurs, the higher the possibility to eliminate 
noise factors and achieve a better accuracy. The problem of 
generating failure type data is costly, and therefore it is not always 
possible to force the system into a failure situation. Alternatively, 
many real-world systems are maintained with preventive 
techniques, where components are replaced after a predefined 
time, before a failure can occur. It does not matter whether the 
component is close to failing or not. Failure type detection, 
without the failure type of historic data, is not easy and not 
mentioned in the literature. However, it might be useful in 
analyzing failure types, because some these do not lead to a 
system crash, but can influence other components and their 
healthy state. 
 

 
Figure 4. State machine with equal distributed states 

 
In lifetime-state data labeling for predictive maintenance, it is 
necessary to categorize the historic data into the lifetime states 
used. As mentioned above, these states are generally equally 
distributed over the lifetime of a component. There are two 
minimum number of states for predictive maintenance (<100% 
and 100%). 
 

2.4 Machine Learning Approaches 
In recent years, machine learning has become increasingly 
important in computer science because data could be collected 
and stored easily. The collected data is usually so extensive that it 
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is not practical to analyze the data manually. In such a scenario, 
the machine learning technique plays a key role. 

Another reason for the growing popularity of machine learning is 
decreasing computational costs. With the evolution of hardware in 
recent years, the usage of machine learning approaches has 
become efficient in terms of both cost and time, especially for 
detecting component failures. Different machine learning 
algorithm requires different set of parameters that can be learned 
from the dataset. 

We conducted experiments on simulated data with the following 
three most widely used machine learning algorithms as outlined in 
Figure 5: 

 
Figure 5. Machine learning models 

a) K-NN (K-Nearest Neighbor) 
In KNN classification [8], the output is a class membership. A 
new object is classified by a majority vote of its already classified 
neighbor objects, with the object being assigned to the most 
common class among its k nearest neighbors. 

b) SVM (Support Vector Machine) 
Support Vector Machines [9] are based on the concept of decision 
planes that define decision boundaries. A decision plane is one 
that separates between a set of objects having different class 
memberships. A new object is classified into the most suitable 
classes using the decision planes. 

c) Random Forest 
Random forests [10] are ensemble learning method for 
classification, regression and other tasks, that operate by 
constructing a multitude of decision trees (classes) at training time 
and output of a new object is the class that is the most common 
predicted by the decision trees.  

We used a simulated data set with 2207 data points each with 300 
features and 23 labels (pre-classified data points) for this 
experiment. K-Fold [11] cross-validation technique is employed 
to find the optimal values for parameters for training each of these 
three ML models. The results of classification of data points are 
listed below.  

Table 1. Experimental results 

Machine Learning Model Accuracy 

K-NN 81% 

SVM 87% 

Random Forrest 85% 

 

Based on the experimental results, SVM performed better than 
other models. 

3. CONCLUSION 
We proposed a new approach to predict component failures using 
past data collection with known component failure types. This 
will identify the necessary preventive actions that will minimize 
system downtime and cost. We introduced machine learning 
approach to analyze the data set and to predict the upcoming 
component failure.  

Potential Applications of the proposed approach also includes 
detection of component malfunction, estimating the degree of 
movement of various components for satisfactory level of 
performance, and migration of workload among multiple 
telepresence robots in a team work environment. 

A large collection of component failure types will enhance the 
quality of analysis. Since it is a tedious process to identify all 
possible component failure types, a cloud based data analysis 
from several telepresence robots will be a viable alternative. As 
the dataset grows extremely very large, designing a distributed 
machine learning approach would be needed. Such an approach 
would offer the advantage that large amounts of data could be 
analyzed in parallel, which results a shorter time to reach a 
decision. 
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