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Abstract

Pipeline networks are one of the key infrastructures of our modern life. Proactive monitoring and frequent inspection
of pipeline networks are very important for sustaining their safe and efficient functionalities. Existing monitoring and
maintenance approaches are costly and inefficient because pipelines can be installed in large scale and in an
inaccessible and hazardous environment. To overcome these challenges, we propose a novel Radio Frequency
IDentification (RFID)-based Autonomous Maintenance system for Pipelines, called RAMP, which combines robotic,
sensing, and RFID technologies for efficient and accurate inspection, corrective reparation, and precise geo-location
information. RAMP can provide not only economical and scalable remedy but also safe and customizable solution.
RAMP also allows proactive and corrective monitoring and maintenance of pipelines. One prominent advantage of
RAMP is that it can be applied to a large variety of pipeline systems including water, sewer, and gas pipelines.
Simulation results demonstrate the feasibility and superior performance of RAMP in comparison to the existing
pipeline monitoring systems.

Keywords: Pipeline monitoring, RFID, Sensor networks, Autonomous robot agents, Robotics in hazardous fields,
Localization

1 Introduction
Pipeline networks are the indispensable part of our mod-
ern life. Proactive monitoring and frequent inspection are
critical for maintaining pipeline health such that safe and
efficient functionalities of pipelines can be sustained for
a longer period. Early pipeline monitoring systems were
developed with a wired network. The primary use of a
wired network is to connect and communicate with sen-
sors scattered through the pipelines. This technique has
a number of problems such as network failure tolerance,
physical security in large scale, and difficulty in locat-
ing and accessing [1, 2]. To overcome these problems, a
solution based on network redundancy to address fault-
tolerance is given in [2]. However, this solution may not
be scalable with the network size and bandwidth, and it
does not consider sensor fault-tolerance. In recent years,
sensor networks have witnessed a rapid growth due to the
development of inexpensive sensing devices and commu-
nication technologies and are used for several applications
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such as agriculture, military, health care, and pipeline
monitoring. Several sensor network-based pipeline mon-
itoring systems have been proposed in the literature,
e.g., [1, 3–7]. However, these systems are passive in
the sense that they do not perform corrective activities
and only report on incidents. Therefore, robot agent-
based technologies are considered as an attractive alter-
native for fully/semi-autonomous pipeline monitoring
and inspection. Moreover, robot agent-based technolo-
gies free the engineers from the confinement of pipeline
inaccessibility, environment hazardousness, and system
scalability. Therefore, a number of robot agent-based
techniques have been studied in the literature, bothmanu-
ally controlled [8–14] and semi-autonomous/autonomous
[15–17].
Existing sensor- and robot agent-based pipeline moni-

toring systems rely on some form of localization method
to locate events and support motions of the sen-
sors/agents, e.g., signal triangulation [4], signal cross-
correlation [6], beacon interpolation [18], number of
wheel rotations [15], pipe-joint location and counting
[19], EM-sonde locating [19], and blueprint of the pipeline
[17]. As outlined in Table 1, these methods exhibit several

© 2015 Kim et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-015-0495-y-x&domain=pdf
mailto: sharma@cs.kent.edu
http://creativecommons.org/licenses/by/4.0/


Kim et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:262 Page 2 of 21

Table 1 Comparison of various pipeline monitoring systems

Quality on localization

Project Active/ Sensing Use of Method Efficiency Cost Autonomy Capability
passive mode robot of repairing

Jin and Edygahi [4] Passive Static No Signal triangulation Fair (sometime complicated) High No No

Jawhar et al. [23] Passive Static No Wired sensor networks Low (subject to failure) High No No

PipeNet [6] Passive Static No Signal cross-correlation Fair (not error-free) High No No

PipeProbe [18] Active Mobile No Beacons + interpolation Low (limited beacons) High No No

SewerSnort [5] Active Mobile No RSSI-based beacons Fair (subject to drifter speed) High Yes No

Murphy et al. [3] Active Mobile No RF-based quorum signal Low (depends on detection) High Yes Limited

GASNET [7] Passive Static No Sensor position Fair (not error-free) High No No

Meribout [24] Passive Static No Sensors + microphone Fair (not noise-free) High No No

Sun et al. [25] Passive Static No Sensors + MI waveguide Fair (depends on detection) High No No

SmartBall [26] Active Mobile No Beacons + acoustic sensor Fair (depends on detection) High Yes No

KANTARO [15] Active Mobile Yes Robot wheel rotations Low (many slip errors) N/A Yes No

MAKRO [17] Active Mobile Yes Sewer blueprint based Fair (map may not available) N/A Yes No

GRISLEE [27] Active Mobile Yes Pipe-joint-location count Low (depends on detection) High No Yes

EXPLORER [28] Active Mobile Yes EM-sonde Low (depends on detection) High No Yes

Our system Active Mobile Yes RFID systems High Low Yes Controllable

shortcomings related to efficiency and cost-effectiveness
in monitoring pipeline systems. In fact, an efficient local-
ization method would provide controllable errors in the
sense that the localization can be performed as per the
error threshold requirement of the pipeline system. In
addition, the major components (the sensors and agents)
of any pipeline monitoring system should have the capac-
ity to use localization to work independently and be able
to collaborate to achieve monitoring efficiency.
The Radio Frequency IDentification (RFID) technology

has recently been used in many areas for different tasks,
for example, it is used in automobile industry for process-
ing tracking, in warehouses for resourcemanagement, and
in livestock industry for tracking animals, and this tech-
nology has been gaining significant attention in the recent
days.
Based on these observations, we propose in this arti-

cle a novel RFID-based Autonomous Monitoring system
for Pipelines, called RAMP, which combines sensor- and
robot agent-based technologies with RFID technology for
the very first time for event (incident) localization and
proactive and corrective monitoring of a large spectrum
of pipeline types including water, sewer, and gas pipelines.
The localization of RAMP is efficient as well as cost-
effective since it uses low-cost passive objects serving
as markers. Our localization solution builds on a con-
cept, denoted as Multiple-channeled Redundant Array
of Independent RFID Tags (McRAIT), which is used to
collect, store, and locate the information about events,
and also to provide fault-tolerance for the collected

information. RAMP also relies on tasks performed by
High-Performance Mobile Sensors (HPMS) and Fully
Autonomous topology-awareMobile Pipeline Exploration
Robots (FAMPER [20–22]).
Our contribution, in this article, is fivefold:

• We propose a RFID-based localization technique
which can be applied to a large variety of pipeline
systems. It allows controllable localization errors
because the threshold it reaches is controlled by a
fixed fraction of the distance separating two
successive localization markers.

• We introduce a new structure for a powerless storage
system using McRAIT to increase detectability,
storage capacity, and fault-tolerance of tags and
communication.

• We design a scalable mobile sensor architecture
which integrates a number of sensing functions, a
configurable transmission function, and
communication functions with McRAIT.

• We design a prototype of an autonomous robot
which has different sensing functions for detailed
inspection and special actuators for repairing
activities on the detected incidents. It uses tilted
caterpillars to overcome motion singularity problems
[14] that may occur in the several pipeline bends (e.g.,
T- or Y-bends).

• We show the cost-effectiveness, scalability, and good
performances of our pipeline monitoring system
based on our RFID-based localization technique of
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mobile sensors and incidents, powerless storage
system using McRAIT, and autonomous robot.

We proceed as follows: Section 2 provides the state of
the art on the sensor- and robotic agent-based pipeline
monitoring and maintenance systems. Section 3 discusses
the requirements for the efficient pipeline monitoring
system and provides a high-level overview of RAMP.
Section 4 describes the McRAIT system design. Section 5
discusses the event localization technique, and Section 6
discusses the complete design of the RAMP system. The
performance of RAMP is given in Section 7, and Section 8
concludes the article with a short discussion.

2 State of the art
We first describe sensor-based pipeline monitoring sys-
tems and then summarize existing robot agent-based
approaches. Table 1 compares the main characteristics
and limitations of the previous work and also compares
our solution with them.

2.1 Sensor-based pipeline monitoring systems
A sensor network platform developed by Jin and Eydgahi
[4] for pipeline monitoring uses acoustics sensing devices
such as Lead Zirconate Titanate (PZT) sensors. This
solution is based on the transmission and detection of
lamb waves and uses a simple triangulation method for
event localization. It exhibits several drawbacks. First,
the acoustic sensors are customized to the structure of
the pipeline which is not appropriate for other types of
pipeline technologies. Second, the topology of the pipeline
is made very simple, making the localization technique
inefficient for complex pipeline topologies.
A wired/wireless sensor network architecture is used by

Jawhar et al. [23] and Mohamed and Jawhar [1] to pro-
vide fault-tolerant communication between sensing nodes
fixed to the pipeline and the main control station. The
wired part of the network is considered as a primary net-
work, while the wireless part is only used for its backup
in case of communication failures. While this architec-
ture addresses reliability issues of the wired network, the
solution does not include a model providing an optimized
management of the energy assigned to sensor nodes (i.e.,
nodes closer to the control station consume more power
than the other nodes) and does not integrate clearly a
localization mechanism.
PipeNet, a wireless sensor network proposed by

Stoianov et al. [6], integrates sensors that are able to
generate acoustic vibration and collect hydraulic and
acoustic/vibration data at high sampling rates. This sys-
tem detects leakage and locates it via cross-correlation
of acoustic/vibration signals. In addition to the draw-
backs of [4], the uniformity of the liquid characteristics
is a must requirement for the efficient localization in

PipeNet. Moreover, GASNET due to Schempf [7] is a
self-powered wireless network of keyhole-installed and
keyhole-replaceable sensors capable of measuring and
communicating pressure, flow, and vibration in natural
gas distribution system pipelines. Comparing to afore-
mentioned systems, it only provides replaceability of the
sensors and most of their limitations still remain.
Several systems have been proposed in the litera-

ture to monitor pipelines using mobile sensors, e.g.,
[5, 18, 24, 25]. The basic idea is to use mobile drifting sen-
sors to (a) monitor the pipeline, the liquid flowing in the
pipeline, and the chemicals generated inside the pipeline;
(b) provide close monitoring of the different areas of the
pipeline; and (c) generate and transmit event-related data
when it observes failing statuses (through beacons, for
example). But a major drawback of this mobile sensor
technique is the inefficiency in accurately locating inci-
dents due to the lack of mobility and the communication
network of the drifting sensors.
PipeProbe [18] is a mobile sensor system used to map

water pipelines hidden within cement walls or under floor
coverings. The system is composed of a small sensor cap-
sule that is dropped into the water pipelines to periodically
collect and store data such as accelerometer readings and
water pressure information. Using these data, the system
tries to reconstruct the 3D spatial layout of the traversed
water pipeline. The major drawback of this method is the
inaccuracy of the collected data and the uncontrolled cor-
relation between linear and rotational speeds. In addition,
the sensors can experience vibrations, which may produce
noisy 3D accelerometer readings.
SewerSnort [5], an in-sewer gasmonitoring system, uses

floating sensors for sewer gas concentration measure-
ment. The floating sensors are introduced at the upstream
station and collect location-based gas measurements as
they travel downstream (our system RAMP also uses this
technique). The collected data is used to visualize gas
exposure, allowing efficient maintenance and/or repair.
The localization of events is through fixed beacons set
up on the manholes in the pipeline structure. This gen-
erates large errors (in our system, it is controlled through
tags installed uniformly inside the pipeline). Furthermore,
floating sensors’ ability tomeasure the gas exposure is lim-
ited by the drastic reduction in gas concentration due to
the flow level of the transported liquid.
Murphy et al. [3] developed a wireless network system in

which an underwater team of “Collaborative Autonomous
Agents” (CAAs) is able to locate and repair scale for-
mations in pipelines and tanks. However, this solution is
limited to the detection and repair of very specific scale
formations.
Recently, Meribout [24] proposed a secure wireless sen-

sor network-based infrastructure for the detection of
eventual leaks in multiphase pipelines, i.e., the pipelines
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which carry more than one fluid. This technique is based
on having the pipeline which carries the fluid be sur-
rounded by another pipeline which can hold the leak
detection unit. It uses an air-ultrasonic sensor and a bidi-
rectional microphone to determine the location of the
leak. However, the need of two layers makes this solution
uneconomical for long-distance pipelines, and also the
localization may not be fairly accurate due to the amount
of noise involved in communication. Moreover, this solu-
tion does not provide proactive monitoring of pipeline
health and requires high topology maintenance cost (e.g.,
battery power).
Similarly, Sun et al. [25] proposed a magnetic induction

(MI)-based wireless sensor network framework to provide
a real-time leakage detection and localization formonitor-
ing underground pipelines. It detects and localizes leakage
by jointly utilizing the measurements of different types
of sensors that are located both inside and around the
underground pipelines. However, this technique does not
fit for low-cost inspection as it needs various sensors both
inside and outside the pipelines. Moreover, it has high
topologymaintenance cost and does not provide proactive
monitoring.
In 2005, Pure Technologies Ltd. developed amobile sen-

sor technology, SmartBall [26], to address the need for
leakage detection on large-diameter pipelines. SmartBall
is designed to operate in live large-diameter water mains.
It has a free-swimming foam ball with an instrument-filled
aluminum alloy core capable of detecting and locating
small leakages (generally, gas pocket leakages) in pipelines
using its acoustic sensor and sound-generating beacons
that are installed along with pipelines. Typically, Smart-
Ball provides location accuracy within 10 feet and 15miles
of inspection range with a single drop. However, in order
to calculate the location of SmartBall, it needs to install
sound-generating beacons which need power and instal-
lation outside the pipeline. Moreover, it requires bea-
con infrastructure maintenance since they need a power
supply and can cause high installation cost for beacon
installation in the case of underground pipelines.

2.2 Robot agent-based pipeline monitoring systems
Robot agent-based systems are considered as an attrac-
tive alternative of sensor-based systems described in the
previous subsection for the fully autonomous real-time
pipeline inspection and monitoring. For natural gas dis-
tribution pipelines, Schempf et al. [27, 28] proposed
EXPLORER and GRISLEE that provide the visual inspec-
tion of 4-, 6-, and 8-in-diameter pipelines. Although
EXPLORER andGRISLEE have comparably goodmobility
in elbows and T-branches of the pipelines, the inspec-
tion using EXPLORER and GRISLEE is cost-expensive
and time consuming as the robot itself is responsible
for the inspection of the entire pipeline. Moreover, these

systems provide nomean for incident localization. Several
other robot agents are proposed for inspecting differ-
ent diameter pipelines, e.g., [8–14]; we direct readers to
respective papers for details and only summarize their
limitations here. It is worth noticing that these robots
are manually controlled and experience several limita-
tions including the following two facts: (i) the topology
of the pipeline, where some of them have been used,
was made simple and does not have vertical segments
and Y- and T-branches; and (ii) the robots exhibit local-
ization problems due to several reasons including wheel
slips and undetectability of the markers. Some researchers
developed semi-autonomous and autonomous solutions
[15–17]. KANTARO [15] is an autonomous mobile robot
used for the inspection of 200–300-mm-diameter sewer
pipelines. It uses a simple moving mechanism which
reduces resource usage. However, the localization based
on wheel rotations is not efficient because a wheel slip
can induce large errors on the location computation.
MAKRO [17] is another fully autonomous, untethered,
multi-segmented, and self-steering articulated robot. It
is designed for inspecting roughly cleaned, non-man-
entry sewer pipes with a diameter of 300–600 mm at
dry weather conditions. Similar to KANTARO, MARKO’s
localization technique is not efficient, and it does not
have vertical mobility. In addition, certain assumptions
such as dried pipelines are not suitable for real-time
operations [17].

3 RAMP overview
3.1 Requirements for efficient monitoring and

maintenance
A pipeline monitoring and maintenance system should
perform three main activities: inspecting pipeline health
regularly, reporting incidents, and recovering pipeline
health from any leakage, damage, or corrosion. Costs
of those activities keep increasing, as well as the scale
of pipelines. Thus, a cost-effective and scalable pipeline
monitoring and maintenance system should be able to
fulfill the following requirements:

• Scalable: The system should adapt to varying
topologies and also be independent to pipeline
characteristics (e.g., shape, size).

• Customizable: It should be a generic solution for
different applications and be extensible to meet the
requirements of more complex pipelines without
requiring major changes in the underlying
architecture or design.

• Dynamic: The system should allow dynamic
inspection of the pipeline and real-time reaction to
problems detected during inspection and provide
robust performance to cope with the variability of
problems that may occur.
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• Proactive monitoring and recovery actions: The
system is able to find defects in the pipelines,
preventing failures and allowing rapid repairing.

• Autonomous: The major components of the system
should work independently yet collaboratively and
perform their tasks autonomously. They should have
sufficient energy to perform their duties without
relying on external energy.

• Cost-effective: The system should reduce the costs of
maintaining and monitoring pipelines.

• Optimized energy consumption: The system
components should provide efficient communication
with low energy consumption. Actions involving
information management, computation, and
recovery should also be optimized for power saving.

• Efficient localization techniques: Efficiency calls for a
distributed system in which entities are aware and
able to locate incidents with controllable errors.

3.2 The pipeline monitoring andmaintenance problem
The pipeline monitoring and maintenance problem we
consider in this paper can be formulated as follows. Let
P be the pipeline system that needs to be monitored. Let
Pud be the portion of P between an upstream station and
a down pumping station; we focus on Pud in this paper,
and the approach for Pud can also be used for the moni-
toring and maintenance of remaining portions of P. There
might be incidents such as leakage and corrosion in Pud.
We have given the error threshold eT such that the differ-
ence between the location of an incident reported in the
inspection process by any pipeline monitoring and main-
tenance system and actual location of that incident should
not differ by more than eT . Therefore, the objective in
this problem is to monitor Pud such that the incidents are
located with error less than eT and repair actions can be
taken on the incidents.

3.3 High-level description of RAMP
RAMP combines sensor- and robot-based technologies
with RFID technology for the very first time for the

proactive monitoring and localization of events in differ-
ent types of pipelines. We use a set S = {s1, . . . , sl} of
l ≥ 1 mobile sensors to locate the incidents which will be
injected to Pud from the upstream station. Moreover, to
perform repairing actions, we use a set R = {r1, . . . , rm}
of m ≥ 1 robot agents which will also be injected to Pud
from the upstream station. The sensors are collected at the
down pumping station and only after processing the infor-
mation collected by them, the robot agents will be injected
to the pipeline, if detailed inspection and repair actions
are needed. For the localization of the incidents within the
error threshold eT and also for the localization of each
sensor si (and each robot agent ri), we use a set F =
{f1, . . .} of localization markers (RFID tags) which will be
installed inside the pipeline in certain intervals. We show
later that the distance separating two localization mark-
ers directly depends on the smaller of the following two
values: (i) the half of the transmission range of the RFID
reader attached to the mobile sensor; (ii) the distance d
separating any mobile sensor si from the next RFID tag in
its way, to have the error within eT on the reported inci-
dents and also on the localization of sensors (and robot
agents) inside the pipeline (during the inspection process).
RAMP has three major components. The first com-

ponent of RAMP is the specially designed RFID tags,
called the Multiple-channeled Redundant Array of Inde-
pendent RFID Tags (McRAIT) system, for the set F . It
is implemented by a passive RFID tag. McRAIT uses
multiple tags and multiple frequencies to improve stor-
age capacity, detectability, and tolerance to loss of infor-
mation. Each tag in the array is allocated to a specific
radio channel as depicted in Fig. 1a so that all tags in
the array can be accessed simultaneously. McRAIT is
used for providing the location and incident informa-
tion within the pipeline topology to the mobile sensors
as well as robot agents. McRAIT installation can be per-
formed initially (at the construction of the pipeline) or
when needed by the pipeline operation. In the latter
case, the robot agent will be used to set up the needed
McRAITs.

Fig. 1 Design of aMcRAIT and b HPMS
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The second major component of RAMP is the specially
designed mobile sensor, called High-Performance Mobile
Sensor (HPMS) (depicted in Fig. 1b), for the set S , which
is equipped with different kinds of inspection capabilities
that allow it to play different roles simultaneously, includ-
ing visual sensing, chemical sensing, pressure sensing, and
sonar sensing. The specific sensing functions attached
to a mobile sensor are determined by the material car-
ried by the pipeline and the nature of the inspection. The
mobile sensor implements a modular architecture inte-
grating multi-channel RFID read/writers for localization
and communication with McRAITs. The main advantage
of mobile sensors used in RAMP is their immunity which
is not sensitive to the pipeline materials and shapes and
are operable during low flow rate conditions.
In the beginning of the inspection, a set of (redundant)

mobile sensors are deployed at strategic locations (nearby
the upstream station or at intermediate outlets). Once
they are deployed in the pipeline Pud, the fluid trans-
ported by the pipeline will provide sensor mobility. The
mobile sensors examine the pipeline using different sens-
ing functions in their course and report the objects and
incidents identified to McRAIT that is close to the inci-
dents. McRAIT helps in determining the mobile sensors’
position by letting its tags serve asmarkers. After the com-
pletion of the inspection, the mobile sensors are collected
at the down pumping station of the pipeline. The central
controlling system then post-processes the information
collected by them for detailed examination.
The third major component of RAMP is the specially

designed robot agent, called Fully Autonomous Topology-
aware Mobile Pipeline Exploration Robot (FAMPER) as
depicted in Fig. 2, for the set R. It performs detailed
inspection and repair of the reported incidents, after the
pre-processing realized by the HPMS inspection. This
robot agent is an extended version of the agent that

appeared in [20, 21]). It is capable of better mobility
in complex topologies, copes with the mass formation
inside the pipeline, and overcomes the motion singularity
problems caused by direction changes and topology vari-
ation. The robot agent is able to stop and even reverse
the motion in the pipeline for in-depth inspection of the
detected incidents. A robotic arm that is associated with
it can be used to install McRAITs and to perform physical
actions for repairing of incidents.
The localization of a HPMS or a FAMPER within a

marked pipeline (i.e., a pipeline where McRAIT mark-
ers have been uniformly installed) is provided by entities
measuring the distance separating them from the closest
marker. Figure 3 depicts an application of RAMP.
Through these components, RAMP provides the follow-

ing four major functions:

• Localization: A scalable set of McRAITs are
integrated inside the pipeline in such a way that they
are uniformly distributed and the distance separating
the McRAIT neighbors can be controlled by the
errors acceptable for an effective localization. We
provide details on how it is performed later in
Section 5.

• Inspection continuity management: A McRAIT
increases significantly the capacity of passive tags
needed to store information collected by mobile
sensors from pipeline inspection, authorize higher
bandwidth for data communications with these tags,
improve the event-related information collection and
retrieval, and provide data loss-tolerance capabilities
of the information collection system in RAMP.

• Event-related information management: A McRAIT
is used as a high-capacity storage device to record
history information provided by the active
components of RAMP. The availability of this

Fig. 2 FAMPER design. a Front view of the tilted catterpillar. b Side view of the tilted catterpillar
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Fig. 3 An application of RAMP

information is needed for the continuity and
efficiency of the inspection operation. It can, for
example, help detect a mobile sensor that got blocked
by a scale formation. In addition, the history
information built on a McRAIT can be
post-processed by the controlling system after an
active component (e.g., mobile sensor) has copied
them and delivered them to the controlling center.

• Repairing: RAMP provides a fully autonomous
topology-aware robot agent equipped with different
kinds of actuators to repair pipeline damages
depending on the inspection and repair demands. It
is able to move properly and autonomously to repair
the pipeline incidents after they have been identified
and located.

3.4 How RAMPmeets pipeline monitoring and
maintenance requirements?

We now describe in brief how RAMP meets the require-
ments that are listed in Section 3.1. The discussion here is
brief, and the details on specific topics will be found in the
later sections.
RAMP meets the customizable requirement since sens-

ing and repairing functions can be added and removed
as per the requirement of the system. Moreover, it can
work for pipelines with various size diameters, bends,
and fluids. Similarly, RAMP meets the dynamic require-
ment since the knowledge of the location of incidents are
not required and they can be dynamic. RAMP meets the
autonomous requirement since the sensor and robot agent
work independently as well as collaboratively. Moreover,
no external control or the power source is needed for
them to be able to perform their functions. The remain-
ing requirements are also fulfilled by RAMP as described
below:

• Meeting cost-effectiveness requirement: The
cost-effectiveness of RAMP should be deduced from
the cost of equipment, cost of deployment, and cost
of processing. The cost of the equipment is drastically
reduced in RAMP through the use of inexpensive

RFID tags. Moreover, the cost in deployment is
reduced since the RFID tags only need to be installed
in the pipeline only once. Moreover, the cost due to
HPMS and FAMPER is also reduced since they are
used repetitively for inspections and repair.

• Meeting scalability requirement: The scalability
requirement comes from the topology of the
pipelines, the length of the pipelines, the types of
incidents, and the number of incident occurrences.
RAMP is scalable irrespective of these factors as it
does not depend neither on specific pipeline topology
nor on pipeline characteristics (shape, size, etc.).
Moreover, it can scale with the number and types of
incidents since new sensors and repairing tools can
be attached to HPMS and FAMPER based on the
inspection needs for the system. Moreover, HPMS
and FAMPER can be tailored to the length of the
pipeline by asking them to work collaboratively to
save power so that they can work for considerably
long time.

• Meeting localization efficiency requirement: the
localization efficiency comes for the fact that a sensor
is able to locate itself anywhere anytime and to locate
an incident when detected. Efficiency also depends
on the control of the errors made on the computation
of the location. As we show later in Section 5, a
sensor is able to locate itself anywhere anytime within
predefined error threshold and this error threshold
applies also on locating an incident when detected.

• Meeting monitoring proactivity requirement : The
monitoring proactivity requirement is that the system
should be able to find defects, should be able to
predict failures, and should allow rapid repairing.
RAMP system is able to find incidents that are
occurred in the pipeline and repairing starts as soon
as the information collected by the sensors is
post-processed by the central controlling system.
Moreover, RAMP has the failure prediction capability
from the information collected by the sensors over
their inspection history. For example, the detection of
the change in pressure in one part of the pipeline
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over time by the sensors implies that a failure might
occur in the near future at that part of the pipeline.

4 McRAITs
We proceed by describing a new concept of McRAIT
which we design for the very first time in this paper
to serve three objectives: First, it increases significantly
the storage capacity available at each marker. Second, it
allows higher bandwidth for data communication with the
passive tags. Third, it improves the fault-tolerance capa-
bilities of the tags available at a given marker by providing
redundant storage. This concept adapts some ideas from
Redundant Array of Independent Disks (RAID) technol-
ogy and adds ad hoc management of the data and also
from two other ideas provided in [29, 30]; namely, the use
of multiple tags and multiple channels concurrently. As
multiple tags were used to provide redundancy without
increasing the global storage and processing capacity of
the systems allowed by the multiple tags, the technique
developed in [29] does not show a real benefit of using
the multi-tag structure, since it does not allow differen-
tial writing operations while maintaining fault-tolerance.
Similarly, the technique proposed in [30] allows 8 tags
to concurrently send their data to a reader which can
increase the data gathering speed and reduce data col-
lision probability. However, the authors did not provide
fault-tolerance to the failure of tags and radio channels.

4.1 McRAIT architecture
Figure 4 depicts the architecture of McRAIT which has
three major components: (a) the array of tags, allowing
to integrate a reasonably large number of tags depending
on the availability of frequencies; (b) the low radio range
multi-channel transponder for the physical communica-
tion with the array of tags; and (c) the McRAIT controller,

providing the basic functions to implement the logical
mapping.
The McRAIT architecture provides fault-tolerance

using multiple multi-channel RFID tags and adapts to
the channel of each tag. It implements multi-channeled
RFID readers/writers and a McRAIT controller. This sys-
tem provides a mechanism to manage concurrently data
onmulti-tags by segmenting and storing it in a way similar
to the storage of data in a RAID system [31]. In addition,
it guarantees tolerance to the occurrence of tag and fre-
quency failures. The data that needs to be written on the
tags is fragmented by the McRAIT controller, and then
the data is sent to the specific tag via the multi-channeled
RFID writers corresponding to its related channel. The
fragmented data can be retrieved by the multi-channeled
RFID readers associated with the channel of each tag and
then merged by the McRAIT controller before the data is
sent to the sender/receiver. Considering failures addressed
by the McRAIT, they can occur when a tag or the channel
serving is unavailable to send or receive data. To overcome
such failures, each McRAIT is equipped with, like RAID
5 and 6 do, a mechanism that allows tolerance to a maxi-
mum of two failures. Indeed, it can be made fault-tolerant
to a higher number of failures.

4.2 Functions of the McRAIT controller
A McRAIT controller has two major functions: multi-
plexing/demultiplexing (MUX/DEMUX) and communi-
cation with the markers and the sender/receiver main
program. Additional functions can also be embedded
in the McRAIT controller. For example, the McRAIT
controller can have authentication, data encryption, and
special operation commands such as batch deletion. A
McRAIT controller should also be able to perform all
functions autonomously. Each read and write operation

Fig. 4 The McRAIT architecture
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in the RFID tags has to be atomic in the controller so
that it can provide, later, multiple physical storages as one
logical mapping without requiring preprocessing for the
main program. The McRAIT controller is also capable of
reporting communication failure(s) to the main program
when it reissues the commands over certain number of
times.
Multiplexing/Demultiplexing: MUX is a read operation

in theMcRAIT controller when data arrives from the tags.
This operation collects the data from each channel and
merges it after data validation using redundant informa-
tion coming along with the data. After MUX, the resulting
data is transmitted to the sender/receiver main program.
DEMUX is an atomic write operation performed in the
McRAIT controller. It decomposes data based on the rules
dedicated for tag storage optimization and redundancy.
Then, it builds, for each tag, the related command issued
from the original command and the DEMUX operation.
The controller also provides an acknowledgment mecha-
nism to check whether an operation has been MUXed or
DEMUXed successfully.
Communication: Frequency sharing reduces the poten-

tial for mutual interference between tags and increases
storage capacity. To provide frequency sharing, McRAIT
assigns a single frequency to each tag. The array, as
assumed to contain as many tags as the frequencies avail-
able, can be addressed by the controller for read and
write operations the same way the system described in
[30]. When a larger number of frequencies are required,
several tags are assigned the same frequency using a fre-
quency division multiplexing (FDM) on the McRAIT to
manage the use of a shared frequency between a group
of tags.
Several additional operations can also be performed by

the McRAIT controller. Among these operations, one can
mention the following:

• Authentication: This function allows to authenticate
the identity of the tag and to check the integrity of its
content. It can also check whether a write command
is authorized. To do so, a unique identifier (UID) and
a very light page table (VLPT) are set up for every tag.
To achieve authentication, the controller should have
a copy of every legitimate UID and should manage
and sign the VLPT of each tag it operates on. Mutual
authentication may also be needed when some tags
are not allowed to deliver their content to an
unauthorized sender/receiver.

• Data encryption: The McRAIT controller can
encrypt data and enhance its security with simple
fragmentation and encryption operations, and the
data encryption can be performed before or even
after data fragmentation. Moreover, it can encrypt
each fragmented data or selected fragmented data. It

is worth noticing that the tags are not involved in any
active encryption or decryption task.

• Special operation commands: The McRAIT
controller can invoke special operation commands
such as batch commands. Those commands can be
sent on each channel for all tags and can be reissued
when a failure occurs.

Due to the relatively slow communication speed with
tags, several simple tasks, such as batch deletion, which
are involved in the aforementioned functions are imple-
mented by McRAIT on the tag side. These tasks help
theMcRAIT controller in reducing transaction load. Nev-
ertheless, McRAIT can increase the speed of communi-
cation, memory capacity, and fault-tolerance by simply
adding tags and using more frequencies.

4.3 McRAIT fault-tolerance
RAID andMcRAIT present several similarities. First, both
architectures use redundant and independent storage and
parallel communication. Second, both of the architec-
tures allow to increase capacity, read/write speed, and
fault-tolerance. To support the latter feature, McRAIT
implements an extra hardware and software controller.
However, some differences can be noticed. First, McRAIT
architecture is responsible for optimally managing the
processing memory and the limited energy which it col-
lects from the incoming communications. In particular,
McRAIT implements a VLPT entry, controls its size for
supporting all requirements (finding, updating, and delet-
ing requested data to/from tags), and allows delivering
the UID and VLPT at the beginning of each transaction
executed by the McRAIT controller.
We have selected two implementation strategies for the

McRAIT architecture: McRAIT 5 and McRAIT 6. The
McRAIT 5 (defined as striped tags with distributed or
interleaved parity) strategy combines three or more tags
in a way that protects the data against the loss of any sin-
gle tag. The McRAIT 6 (or striped tags with dual parity)
strategy combines four or more tags in a way that pro-
tects the data against loss of any pair of tags. The parity
information can be implemented using striped set with
dual distributed parity. The read/write and data place-
ment strategies (as used in RAID systems) have also been
adapted to the McRAIT architecture. In Section 7, in the
following, we will analyze the relationship between the
number of tags within the McRAIT and the performance
of the pipeline monitoring.

5 A technique for incident and sensor localization
5.1 Maximum range estimation
Assuming that a transmitting RFID reader is isotropic −
radiates in all directions with the same power density −
the power received by an RFID tag at any given distance
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r from the reader, Ptag = Preader
Ae,tag
4πr2 , where Preader is

the radiated power from the reader antenna and Ae,tag
is the effective aperture of the tag antenna. Following
[32, 33], the effective aperture of an antenna around a half-
wavelength long might correspond to a square around a
half-wavelength on a side, i.e., Ae,tag = λ2

4π for an isotropic
tag antenna transmitting in a free space, where λ is the
related wavelength.
Since we have the effective aperture for an isotropic

antenna transmitting in a free space, from a consequence
of the principle of reciprocity [33, 34], we can writeAe,tag =
Gtag

λ2

4π for a directional antenna, where Gtag is the gain
measured relatively to an isotropic antenna or to a dipole
antenna. Therefore, we can have a very general equation
for the power received from a transmitting antenna reader
by a receiving antenna tag based on the gains of the reader
and the tag, assuming that the distance between them is
known.

Ptag = PreaderGreader
Ae,tag

4πr2

= PreaderGreaderGtag

(
λ

4πr

)2
.

(1)

Equation 1 defines a very convenient way to state the
expected received power between a transmitter and a
receiver. Another important factor to take into account is
the polarization. For the case of linear polarization, Eq. 1
becomes

Ptag = PreaderGreaderGtagcos2(θpol)
(

λ

4πr

)2
, (2)

where θpol is the angle between the transmitted polar-
ization and the receiving antenna axis. Thus, the max-
imum forward-link-limited range (denoted as Dforward)
will be proportional to the cosine of the misalignment
angle.
From Eq. 1, defining the minimum power required by a

tag to wake up and decode the reader signal as Pmin,tag, we

obtain Dforward for a RFID reader as given below with the
assumption that there is no misalignment in polarization:

Dforward =
(

λ

4π

) √
PreaderGreaderGtag

Pmin, tag
, (3)

and defining the minimum signal power for demodulation
at the reader as Pmin,reader, we obtain the reverse-link-
limited range Dreverse as:

Dreverse =
(

λ

4π

)
4

√
PreaderTbG2

readerG
2
tag

Pmin, reader
, (4)

whereTb (generally= 1/3 or−5dB [32]) is the backscatter
transmission loss of the tag antenna.
To reach the maximum range provided by Eqs. 3 and 4,

we should have(PreaderGreaderGtag

Pmin, tag

)2
≥ PreaderTbG2

readerG
2
tag

Pmin, reader
, (5)

which is equivalent to

Pmin, reader ≤ Tb
Preader

× P2min,tag. (6)

Therefore, the Pmin,reader should be smaller than Tb
Preader ×

P2min,tag to allow proper communication at the distance
equal to Dreverse. In the simulation, the latter value is
referred to as the maximum distance.

5.2 McRAIT-based localization
We first discuss the scenario to localize a sensor node that
goes through the pipeline, detects an incident, and reports
it to the closest marker. Figure 5 illustrates this scenario.

1. When the sensor detects an incident (or wants to
report on its position), it identifies the type of
environment it has to transmit in using an ad hoc
sensing function.

Fig. 5 Sensor localization within the pipeline
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2. The sensor transmits a signal with a power Preader
which reaches the nearest tag T1 and the next tag T2,
with a power fulfilling the conditions established in
the previous subsection.

3. The signal received by the tags is reflected back to
the source sensor. It computes the distances r and r′
to tags T1 and T2, using the appropriate formula
given in Eq. 3.

4. The sensor selects the nearest tag if the error on the
location is smaller than a predefined threshold eT .
Otherwise, it selects the second nearest tag. Then, it
stores in the selected tag the computed distance as
the localizing distance.

The computed distance locates the sensor position (and
the incident event, if any) as if it were flowing close to
the pipeline wall (this assumption is at the origin of the
error addressed at the end of this section and we try to
bound this error within the threshold eT by placing mark-
ers in certain intervals so that the error on localization for
sensors and incidents is within eT ).
In order to perform these steps, we suppose that the

distancemade by the sensor node during the signal round-
trip can be approximated to zero. Consequently, the angle
α between r and r′ is too small and both the transmitted
and the reflected signals make nearly the same distance. In
the following, we formally establish the expression of this
distance.
Let r be the distance separating the sensor node from

the nearest tag. According to Eqs. 2 and 4, r can be
expressed as follows:

r =
(

λ · cos(θpol)
4π

)
4

√
PreaderTbG2

readerG
2
tag

P′
reader

, (7)

where P′
reader is the received power at the system. The rel-

ative error associated to the computation of this distance
should fulfill the following inequality:

�r
r

≤ �Preader
Preader

+ �P′
reader

P′
reader

+ �θpol
θpol

+ �Tb
Tb

, (8)

where �X
X denotes the relative error associated with a

measurable variable X.
Assuming this, it comes that if the system is able to pro-

vide Preader, P′
reader, and θpol with less than 3 % error, then

the errormade on rwould be nomore than 10%. Thus, the
efficiency of the distance computation may be controlled
by the errors made on P′

reader and θpol.
Supposing that the processing delay at the tag level

is minimal with respect to the propagation delay, the

distance ξ made by the sensor node during the signal
round-trip is given in Eq. 9.

ξ = 2.r.Vm
Vp

, (9)

where Vm is the sensor velocity and Vp is the propagation
delay related to the liquid injected in the pipeline. This
means that ξ

r = 2.Vm
Vp

.
Estimate now the error �r on the distance r reported

by a sensor to locate itself or an incident it detects with
respect to a selected marker. Let R be the actual distance.
The error �r is given by

�r = r − R ≤ r(1 − cosθ). (10)

Therefore, the relative error �r
r is smaller than 1− cosθ .

Thus, allowing a sensor that is separated from tag T1 by
a distance d ≥ L

tanθ
to communicate with the next tag T1

would guarantee a relative error smaller than (1−cosθ ). In
particular, if the threshold eT set for 1−cosθ to be equal to
10 %, for example (i.e., θ = 25°), then the above assump-
tion gives a value for d ≥ 2.1 × L, where L is the diameter
of the pipeline. For θ0 = 15°, the relative error is smaller
than 4 % and d ≥ 3.7 × L.
Therefore, if the given threshold eT =4 %, then installing

the localization markers (McRAIT tags) in the uniform
interval of d = 3.7 × L always gives the localization error
for mobile sensors, robot agents, and incidents within 4 %.
Note that the interval distance depends also on the max-
imum transmission distance of the RFID reader used in
HPMS. Since, the RFID reader needs to contact at least
two successive RFID tags for the incident storage, if the
maximum transmission range of the reader is dtr , then the
interval of McRAIT tag installation inside the pipeline is
min

{
dtr
2 , d

}
. For the case when dtr

2 ≥ d, the localization
error within eT is immediate as discussed above. For the
case when dtr

2 < d, the interval is smaller than d and it is
easy to see that the localization error is again within eT .
We will study in Section 7 the variation of the error

experienced by measuring of the distance between a sen-
sor and a selected tag to which the distance is computed.

6 RAMP design
6.1 McRAIT design
A RFID tag can hold a unique identifier (UID) that can
be used for inventory management at the global scale.
More than just holding an UID, a tag can carry re-
writable persistent storage accessible via a reader. In this
sense, RFID tags can extend a sensor network by pro-
viding sensing properties to otherwise unsensible objects;
thus, they provide the last-hop connection of a sensor
network.
In RAMP, the passive RFID tags work as fixed sen-

sors. They are integrated under a McRAIT structure
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inside the pipeline at a reasonable distance computed
in the previous section between each other, while RFID
reader/writers are integrated in themobile sensors and the
robot agents. Sensors and the robot agent can read and
write the McRAIT tags that are available in their course of
operation for recording the events. They can also collect
the history of events stored on McRAITs and clean their
contents.
RAMP uses arrays of eight tags (of the order of 2048

bytes) providing a storage capacity of 12 KB (= 6 × 2 KB)
for storing event information and 4 KB for fault-tolerance.
The content of every tag is divided into three types of areas
to allow the storage of data structures. The first area is
located at the front of the tag and contains only the data
related to the identification of the tag and the table report-
ing on the page content (VLPT). In particular, 8 bytes is
used for tag identification, which allows the management
of 4 billion tags, if only half of them is used and the other
half is reserved. VLPT contains 4 rows of 16 bits each.
The bit located at the ith row and the jth column shows
whether the jth 32-bit word in the ith block is empty (bit
equal to 0) or full (bit equal to 1). The second area includes
the information related to the history of sensor mobil-
ity. Every data structure related to history is assumed to
start with a 0 bit and can be appropriately structured. The
third area contains the information related to the events
detected by the sensors. Every data structure related to
events starts with a 1 bit.
Every data structure reporting on history or incident

events is a 32-bit word. History data structure contains
information about the sensor ID associated with the his-
tory event and the timestamp of the storage operation.
Incident event data structure contains information about
the timestamp of the storage, event location, event type,
and some extra information related to the event. The
structure used for the event location field contains a pair
(r, n), where r is the effective distance to the closest tag
to the event occurrence and n is the number of tags sep-
arating this tag to the tag storing the incident event data
structure. Therefore, the distance separating the incident
position and the marker containing the related event is
bounded by 2s, where s is the number of bits used to
store n.
Memory management in the RFID tags is handled based

on the following different situations:

• Managing memory full condition: Once the memory
of the McRAIT located at a marker near a mobile
sensor becomes full, the data gathered by the sensor
is stored in the next McRAIT tag with available
entries. When a tag is unavailable within 2s − 1
marker, the sensor selects a McRAIT from the
following 2s − 1markers at random. It deletes the
oldest entry and stores the reported event.

• Initializing the monitoring: Once the pipeline
inspection process starts, the first mobile sensor in
the batch deletes all the entries and history by putting
the 0 bit to the VLPT, and storing its identity in the
history area. The deletion operation is subject to a
criterion; when the information related to a
preceding inspection is required, the deletion is
performed by conditions on the timestamp field.

• Entry duplication: Due to the space limitation of
McRAITs, redundancy is optimized. Event storage is
subject to the absence of a report on the event made
by another mobile sensor prior to it. For this
technique to work, the sensors need to be
synchronized. Synchronization can be performed at
the pipeline’s entrance.

• Tracking mobile sensors: Mobile sensors are tracked
through a registration scheme in which every sensor,
at a designated marker, registers its identity along
with a timestamp. To efficiently use available storage,
a criterion can be used. In particular, the registration
scheme can be applied to selected markers based on a
density-aware selection criterion, for example, the
registration can be made every 5 McRAITs.

6.2 HPMS design
RAMP requires high-performance processing power for
the mobile sensors in order to achieve accurate inspection
and execution of the complex functions. Since the mobile
sensor’s mission within the pipeline does not last for a long
time, the power limitation does not affect such achieve-
ment. Notice that power limitation is a serious hand-
icap for sensor-based applications such as those using
MICA [35].
An HPMS is designed with four components: a main

board, a McRAIT controller, a sensing platform (contain-
ing different sensors), and a container. It has a flexible
interface to integrate other sensors and communication
capabilities. It also needs to be sufficiently small in size
and light to facilitate its transportation by the liquid inside
the pipeline. The main process in the HPMS manages
complex tasks and controls the sensors and the McRAIT
controller. It consists of two components: an Overo-board
[36] and an interface board (Fig. 6). The Overo-board
is made by Gumstix Inc. It has 600MHz OMAP 3530
Applications Processor with ARM Cortex-A8 CPU, 256-
MBmain memory, and 256-MB flash memory. It provides
both Wi-Fi and Bluetooth communication capabilities.
Moreover, it is equipped with the C64x+ digital signal
processor, which accelerates processing of signals coming
from sensors. All these functions are completely imple-
mented in a very tiny board of size 17 × 58 × 4.2 mm.
The interface board is designed to integrate various

sensors such as a CCD camera, sonar sensors, pres-
sure sensors, and chemical sensors. Regarding chemical
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Fig. 6 HPMS interface board

sensors, HPMS currently uses a methane gas sensor
and a CO (carbon monoxide) gas sensor , which are
the most basic sensors for detecting the mixture of
toxic and non-toxic gases produced and collected in the
sewer pipeline; note that many other sensors can also
be added in HPMS depending on the inspection need.
Regarding camera sensors, HPMS includes a camera
sensor module OV5640 (http://www.ovt.com/products/
sensor.php?id=177) that takes pictures of the incidents
and stores them in the HPMS storage dedicated to save
those pictures. This storage helps in capturing the inci-
dent details without overloading the limited storage and
communication capability provided by McRAIT tags.
Moreover, considering the storage requirement in case of
many incidents, the camera sensor becomes active only
after an event is triggered by other sensors to take picture
for detailed inspection. Sensors are pre-coded on when
they trigger the camera sensor. Regarding sonar sensors,
HPMS uses the lower power untrasonic sensor Maxbotix
LV-MaxSona family series (http://www.maxbotix.com/
documents/LV-MaxSonar-EZ_Datasheet.pdf) which pro-
vides the distance measurement on detected objects only
consuming 2mA. Regarding pressure sensors, HPMS
uses the barometric pressure sensor BMP180 (http://
www.bosch-sensortec.com/en/homepage/products_3/
environmental_sensors_1/bmp180_1/bmp180) which can
measure the change in the pressure inside the pipeline
even under the open channel.
The interface board is fully connected to the Overo-

board through two 70-pin AVX 5602 series connectors.
Moreover, the interface board provides 4 generic USB
ports and regulates stable electric power from batteries
to supply all devices in the HPMS. Extra sensors can
be added to the HPMS through USB ports, or through
extension boards stacked on top of the interface board.
The McRAIT controller integrates the SkyeModule M10
UHF module [37] and a redundant array of independent

tags (RAIT) software. The SkyeModule M10 reader mod-
ule has up to 5 m of communication range in maximum
scan mode (1.5 mA, 30 db). Since the mobile sensors
(and the RFID readers) are operated for a very short time
(only in the inspection time), the power should not be
the issue for the reader (and also for HPMS). However,
if the reader (and HPMS) needs to operate for a rela-
tively long time, it can perform power control and noise
reduction through a power management policy of HPMS
which allows the reader to be in idle and active scanmode.
The idle mode duration for the reader can be adjusted by
the travel velocity of HPMS during pipeline inspection so
that power can be managed optimally. This adjustment
is possible since HPMS can estimate travel distance/time
between the detected tag and the next tag in its way based
on the travel speed calculated by the values provided by
an accelerometer sensor. The SkyeModule M10 reader
also provides a library, called SkyeAPI, that simplifies and
automates the RFID tag and protocol-specific functions.
Lastly, two types of containers are used within the HPMS
to protect the whole device from external hazards and
provide floating capabilities. The two types are the capsule
container and the spherical container. The overall dimen-
sion of a container does not exceed 80 mm, making the
HPMS usable in small size pipelines. However, it can have
a larger size for more intensive functions, when used in
larger sized pipelines.

6.3 FAMPER design
The autonomous robot agent designed for RAMP is com-
pact, efficient, and smart. It is a self-contained robot
that can navigate and analyze pipeline incidents using
on-board resources. The robot agent has four tilted cater-
pillars set up uniformly all around the robot body. The
tilted caterpillars provide a spiral motion of the robot
inside the pipeline (5° tilted caterpillars have been pro-
totyped as depicted in Fig. 2). We have found that the

http://www.ovt.com/products/sensor.php?id=177
http://www.ovt.com/products/sensor.php?id=177
http://www.maxbotix.com/documents/LV-MaxSonar-EZ_Datasheet.pdf
http://www.maxbotix.com/documents/LV-MaxSonar-EZ_Datasheet.pdf
http://www.bosch-sensortec.com/en/homepage/products_3/environmental_sensors_1/bmp180_1/bmp180
http://www.bosch-sensortec.com/en/homepage/products_3/environmental_sensors_1/bmp180_1/bmp180
http://www.bosch-sensortec.com/en/homepage/products_3/environmental_sensors_1/bmp180_1/bmp180
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spiral motion performs better than the straightforward
motion in the presence of motion singularity problems
[14]. In particular, the tilted caterpillars provide the func-
tionality to self-adjust the position so that three or more
caterpillars eventually get in contact with the surface
of the pipeline wall when motion singularity conditions
occur.
Each caterpillar frame has four shrinkable shafts that

provide support and 50 % shrinkability, giving the robot
the flexibility to use in inspecting pipelines of variable
sizes. In particular, the robot agent allows a maximum
shrinkability of about 20mm, as shown in Fig. 7, where the
outside circle represents the pipeline wall and the dotted
circle shows the robot size at the full shrinking condition.
The design based on tilted caterpillars allows the robot

to travel vertically as well as horizontally in pipelines with
different fittings. Furthermore, we address electrical and
reactivity challenges through a robust structure design.
The electrical part of the robot is made waterproof; mean-
while sufficient space and resources are added to allow
the robot to handle chemical and mechanical actions. The
robot is equipped with a chemical sprayer for chemical
actions and a robotic arm to handle physical accidents.

6.4 RAMP prototype
The RAMP prototype that we developed provides a thor-
ough analysis of all functions and features. Currently,
the prototype integrates (a) a storage device that has the
capability to store information about health-related events
and sensor location capable of reducing the marker’s fail-
ure, (b) a robot agent that is capable of spiral and vertical

motion in 150-mm-diameter pipelines, and (c) a reader
and writer system that is capable of supporting incident
location. Ongoing activities include the implementation
of (a) a configurable McRAIT that copes up with large
applications and provides fault-tolerance to tag and chan-
nel failures, (b) a prototype for HPMS including various
sensor functions and efficient power management includ-
ing sleep-mode strategies that allow the coordination of
HPMS activities, in order to cope with long pipelines, and
(c) different robot agents adapted for different pipeline
usages and sizes.
In particular, several strategies to increase the HPMS

inspection range can be achieved by adjusting the quality
of inspection such as wakeup sensing (sonar, camera, etc.)
by a triggering sensor (sound, barometer, accelerome-
ter, etc.), controlling communication with McRAIT-based
markers, and using multi-HPMS coordination. Nonethe-
less, we have found that, in the case of sewer pipeline
with a fluid speed of about 0.5 km/h (which is slower
than the minimum recommended velocity for sewer
flow, http://www.edmonton.ca/city_government/utilities/
sewer-design-standards-guidelines.aspx), the maximum
inspection range of HPMS that can be easily achieved
is 4 km, which is 8 h with the wakeup trigger sensing
mode and the activate/deactivate tag scan mode. There-
fore, an accurate coordination between 25 HPMSs allows
an inspection range higher than 100 km.
Moreover, HPMSs can be configured with different

strategies to increase their life cycles. Two kinds of strate-
gies can be applied to this end, the collaboration-in-group
strategy and the individual-target-range strategy. In the

Fig. 7 Cross-sectional view of FAMPER

http://www.edmonton.ca/city_government/utilities/sewer-design-standards-guidelines.aspx
http://www.edmonton.ca/city_government/utilities/sewer-design-standards-guidelines.aspx


Kim et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:262 Page 15 of 21

former strategy, a bunch of HPMSs act as a collaborat-
ing group and allow only one HPMS in the group to be
active at a time. An efficient communication scheme coor-
dinates the sleep/awake process of the members of the
group. In the latter strategy, HPMSs are configured with
different target range settings on which they switch to
activemode while they will be in sleepmode the rest of the
time.
The prototype for the robot agent FAMPER (depicted

in Fig. 2) has 4 expandable one-segment tilted caterpillars.
The robot has attached an RFID reader/writer to collect
information stored at the tag level, a chemical tank and
sprayer for actuation purposes, two Li-ion batteries for 1-
h life, and a CCD camera for creating high-quality images
related to inspection. It has high processing power, large
memory, and several sensing functions. In addition, the
robot has four extendable external interfaces to add differ-
ent modules for pipeline inspection demands as shown in
Fig. 7.
To cope with the pipeline size, the topology of the

pipeline is assumed to provide several points of access/exit
to the pipeline. The distance between two consecutive
points is clearly linked to the life cycle of the robot.
This distance can vary from several kilometers to several
tens of kilometers based on power resources available for
the robot agent, the nature of inspection/repairing, and
the complexity of the pipeline topology (e.g., number of
bends).
Finally, notice that several requirements need to be sat-

isfied so that the HPMSs and robot agents can inspect
the pipeline system properly. For the localization to be
efficient, the distance between the markers should be
smaller than the radio communication range of the RFID
and the propagation model should fit with the nature
of the liquid/gas inside the pipeline. The pipeline should
be filled at a certain level such that HPMSs can flow
and communicate with the McRAIT markers using radio
frequencies.

7 Experiments
To validate the performance of RAMP, several simulation
experiments have been conducted. The objective of the
simulation was, first, to analyze the marker occupancy
size over time and inspections; second, to estimate the
maximum range and relative errors in the McRAIT-based
localization; and third, to compare the efficiency of RAMP
with respect to a system that does not use mobile sensors
and builds on a different localization scheme.
The illustration of the pipeline system used in the sim-

ulation experiments is given in Fig. 8 which comprises
linear segments and horizontal and vertical L-bends to
demonstrate the capability of the robot agent FAMPER to
cope up with the complex environments. In particular, the
pipeline system (Fig. 8) consists of 26 pipeline segments,

Fig. 8 Illustration of a pipeline system used in experiments

one upstream station, and one down pumping station. The
pipeline used in the pipeline system is a 150-mm sewer
pipeline to which a McRAIT-based marker is attached
every 500 mm. We assume that the fluid carried by the
pipeline is flowing in the direction as indicated by the
arrows.We also assume that eachmarker has limited stor-
age capacity (only 2KB × the number of tags in the related
McRAIT) to store history and incident information dur-
ing the pipeline inspection. The mobile sensors are drifted
to the pipeline from the upstream station and transported
by the fluid through the pipeline. The drifted mobile sen-
sors are collected at the exit of the pipeline and their
storage is uploaded to the central controlling unit from
the down pumping station for further processing of inci-
dent localization and pipeline health-related information
collection. The incidents within the pipeline are artificially
created at random locations to simulate the actual pipeline
environment evolution.
In the experiments related to the marker occupancy, we

first derive the optimal values of the number of mark-
ers that should be installed per segment in the pipeline
(denoted by s/s), the number of tags per marker (denoted
by m), the number of inspection history information that
can be accommodated (denoted by H), the number of
mobile sensors (denoted by n) used in a mission, and the
number of hops (denoted by Hop) that are used to store
the incident information when they are detected. The
number of hops is measured in terms of the number of
successive markers found between the incident location
and the actual marker where the incident information is
stored.
In order to estimate the optimal values of s/s, m, H,

n, and Hop values, we develop an algorithm that allows
the mobile sensors drifting inside the pipeline and arriv-
ing to a junction to randomly select one of the available
directions and write randomly on two among the markers
available on that segment to store their identity. If an
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incident is detected during inspection and the memory
entries of the markers in the vicinity of the detecting
mobile sensor are full, then the data is stored in the next
available marker, provided that the distance to that marker
can be reported in the event location field (in our experi-
ments it is equal to 6) of the RFID event structure. Indeed,
the algorithm assumes that the detecting mobile sensor
tries to write in the first available marker until Hop/2. If
no marker is available within this range, a next marker
is randomly selected among the next Hop/2 markers and
the information is written on it, by overwriting the oldest
entry, if needed.
Figure 9 shows the average occupancy of the McRAITs

installed in each marker in the pipeline. It shows that the
load of the McRAITs increases with the number of his-
tories (H) related to inspection missions and the number
of mobile sensors (n) used for inspection. In addition,
we notice that for a fixed number of mobile sensors, the
McRAIT load increases significantly withH and decreases
with the number of markers/segment (s/s). This shows
the tradeoff between the load and the product H × (s/s).
Moreover, Fig. 10 shows the average occupancy of mes-
sages inMcRAITs with different values ofH. In sum, these
two figures demonstrate that the storage space of a marker
(or the number of tags per marker) is determinant for the
history the system needs to keep in memory. In particu-
lar, only 4 tags are needed to provide an occupancy under
60 %, when there is no need to memorize more than 20
inspection missions.
We also evaluated the RFID entry concentration (or

load) on the markers installed in the pipeline. Figure 11

shows the 3D graph depicting the load of all the 4-tag
McRAITs installed on the markers when 12 incidents
are randomly generated and 50 mobile sensors are used,
assuming that H = 5, s/s = 10, and Hop = 6. The figure
demonstrates that the markers located just after the inci-
dents have higher load and that the following markers
have decreasing loads with the distance separating them
from the incident.
The second set of experiments aimed at estimating the

maximum range and relative errors in the McRAIT-based
localization. Figure 12 shows the maximum forward-link-
limited range (Dforward) estimation between a RFID reader
and a marker for an ideal isotropic antenna, a dipole
antenna with gain 2.2 dBi, and a directional antenna with
gain 6 dBi for the various transmitted powers of the
RFID reader. The figure demonstrates that for the system
to be effective using the state-of-the-art tags, the dis-
tance between two consecutive markers should be smaller
than 14 m. This distance can be improved by increasing
the transmitting power of the RFID reader and the tag
capacity to react.
Figure 13 shows the variation of maximum relative error

�r
r on the reported distance with the variation of thresh-
old angle θ0. It shows that when θ0 is smaller than 25°, the
error is smaller than 10 %.
It is even smaller than 4 % when θ0 is lower than 15°.

The relation between the diameter of the pipeline L and
the distance d fromwhich it has to contact the next closest
tag for different threshold angles is given in Fig. 14.
One can notice that for θ0 = 15°, the distance should be

around 3.7× L. Figure 15 depicts the relation between the

Fig. 9 Average occupancy of the marker storage for different parameter settings and Hop = 6
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Fig. 10 Average occupancy of the marker storage for different history settings, and n = 100, s/s = 20, and Hop = 6

average error (�r) made on the reported distance and the
number of incidents in the pipeline, assuming the distance
between two markers in the pipeline is 1000 mm, pipeline
diameter is L = 150 mm, and mobile sensors are drifting at
50 mm above from the bottom of the pipeline. The figure
shows that when the number of incidents grows from 0

to 100 the average is increasing. This average remains
constant for numbers of incidents higher than 100, despite
the value of θ0. In other words, the figure demonstrates
that the number of incidents has no effect on the average
value of the error made on the localization distance to a
marker.

Fig. 11Measured RFID entries concentration for 12 incidents using 4-tag McRAITs with values of n = 50,H = 5, s/s = 10, and Hop = 6



Kim et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:262 Page 18 of 21

Fig. 12Maximum limited radio range between a reader and a marker for different transmitted power

The third set of experiments aimed at comparing three
strategies that can be implemented by the robot agent
FAMPER to find a reported incident. The strategies are
as follows: (a) the robot is aware of the incident posi-
tion (as provided by our system); (b) the robot applies
the depth-first strategy to locate the incident; and (c)
the robot attempts a random walk. The major parameter
used in the comparison is the number of segments trav-
eled from the upstream station made by the robot to find

the reported incidents. To achieve a significant compar-
ison, the random walk strategy is repeated several times
(1,000,000 random samplings) and the distance computed
is the average number of segments traveled. The distance
reported for the depth-first-based strategy is also the aver-
age of the distances needed to reach all incidents located
at the same segment count with respect to the upstream
station. Figure 16 depicts the comparison of the number
of segments needed to travel by the robot agent for a grid

Fig. 13Maximum relative error vs. threshold angle plot
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Fig. 14 The relation between distance d and diameter L of the pipeline

pipeline having 10 per 10 segments. We can notice that
our approach gives the least distance to perform (since the
graph is the bisector of the first quadrant). The other two
methods compute an average distance that is very high
compared to our method.

8 Conclusions
We presented RAMP, a novel autonomous monitoring
and pipeline maintenance system which combines sensor-
and robot agent-based technologies with RFID technol-
ogy for the very first time to bring forth a cost-effective,

Fig. 15 Effects of the number of incidents on the average error made on the reported distance
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Fig. 16 Comparison of the average distance the robot agent travels to find reported incidents using three strategies

scalable, and customizable system that can efficiently
locate health-related events. This leads to more accurate
and effective maintenance of a large range of pipeline
systems compared to the techniques proposed in the
literature.
The proposed system has many rooms for future

improvements. We need to develop unfinished features of
the robot agent for real-world implementations such as
the liquid resistance of a robot agent, secure mobility in
pipelines of different sizes and materials, and goods trans-
ported by pipelines. In addition, it needs more sensitive
and powerful sensors for detailed inspection and energy-
efficient components and powerful battery for increasing
mission range of the robot agent. Further, we need to
develop various types of buoys for mobile sensors which
provide not only protection of the components of the
mobile sensor but also increase efficiency of inspection
during its operation. Lastly, we should implement the
McRAIT architecture to improve the performance of the
fixed sensor and the efficiency of event location of RAMP.
Nevertheless, RAMP has demonstrated the feasibil-

ity and superior performance in comparison to existing
pipeline monitoring systems and also showed its cost-
effectiveness and scalability. Our contributions include
an efficient technique for localization, fault-tolerant sys-
tem for information storage and localization support, and
the design of an autonomous 4-caterpillar robot. Experi-
ments along with the prototyping activities demonstrate

the feasibility and superior performance of RAMP in com-
parison to existing pipeline monitoring systems, along
with its cost-effectiveness and scalability. The preliminary
results of this work has been presented in conference
papers.
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