
Approximating Sweep Coverage Delay

Gokarna Sharma and Jong-Hoon Kim

Department of Computer Science, Kent State University, Kent, OH 44242, USA
{sharma@cs.,jkim72@}kent.edu

Abstract. We consider the following fundamental sweep coverage problem that
arises in mobile wireless sensor networks: Given a set of k mobile sensors and
a set of m points of interests (POIs) in the Euclidean plane, how to schedule the
mobile sensors such that the maximum delay between two subsequent visits to a
POI by any sensor is minimized. We study two scenarios of this problem: (i) start
positions of the sensors are fixed such that they must return to their start positions
between subsequent traversals to POIs that fall in their trajectories, and (ii) sensor
positions are not fixed and they are not required to return to their start positions
between subsequent traversals. Scenario (i) models battery-constrained sensors
which need to be recharged frequently, whereas scenario (ii) models sensors that
have no constraint on battery and hence frequent recharging is not necessary.
We present two constant factor approximation algorithms for each scenario. The
problem we consider is NP-hard and, to the best of our knowledge, these are the
first algorithms with guaranteed approximation bounds for this problem.

1 Introduction

Tremendous work in the literature of wireless sensor networks (WSNs) has established
that one of the major applications of sensor networks is on surveillance problems [1, 3,
4, 12, 15, 16, 20, 21, 23–29, 31]. These surveillance problems require specific coverage
requirements for different proposes. The vast majority of work on surveillance prob-
lems using static and mobile WNSs focused on providing two kinds of coverage: full
coverage and barrier coverage. In full coverage, sensors deployed over the given field
continuously monitor the entire area. Any point within the area is ensured to be covered
by at least one sensor. A full coverage is usually required when users need to fully mon-
itor the entire environment. In barrier coverage, sensors are deployed to form a barrier
for detecting any intruders crossing the given barrier area, which is generally a line seg-
ment or a strip. The sensors then guard the barrier by guarding the crossing paths. The
κ-full coverage and κ-barrier coverage variations of these problems were also studied
[1, 12, 16, 20, 28, 26, 29, 31].

Both the full and barrier coverage problems can be classified as the static coverage
problems since the given area (or barrier) needs to be covered at all times by the sensors.
In contrast, some applications may require that coverage be provided for the specific
given points periodically, i.e., the points do not need to be covered at all times and
they only need to be visited within a specific period. One immediate application of
such setting is in patrolling where certain points of interests (POIs) are visited within
a specific time period. This problem is called sweep coverage and it differs from the

static coverage problems as POIs do not need to be covered at all times and only the
specific time requirement for inspecting the POI needs to be satisfied. Li et al. [18] were
the first to study this problem from the objective of minimizing the number of sensors
given the sweep period. We denote this problem as MINSENSORSWEEP – given a set
of m POIs and the (global) sweep period t, the goal is to schedule sensors such that the
sweep coverage requirement is satisfied with the minimum number of sensors.
Contributions. In this paper, we consider the sweep coverage problem with the objec-
tive of minimizing the coverage delay. That is, given a set of m POIs and a set of k
mobile sensors, the goal is to schedule the given sensors such that the sweep period t is
minimized. We denote this problem as MINDELAYSWEEP. MINDELAYSWEEP is dif-
ferent than MINSENSORSWEEP since we deal with the problem of minimizing the time
period between two subsequent visits of the POIs. The only previous work that studies
this problem is due to Chen et al. [5] where they provided several algorithms to mini-
mize the coverage delay. However, their algorithms were evaluated only through exper-
imentally and no approximation bounds were given. Therefore, we focus on designing
algorithms and proving achievable approximation bounds for MINDELAYSWEEP.

We consider two different scenarios of MINDELAYSWEEP. The first scenario,
called Predefined-Start, covers the case in which start positions of sensors are fixed
and after every traversal of the POIs in their trajectories, the sensors go back to their
start positions. This scenario is useful when sweep coverage is provided by the battery-
constrained mobile sensors which need to be recharged quite frequently at their base
stations. The second scenario, called Not-Predefined-Start, covers the case in which
sensor positions are not fixed and they do not need to go back to their base stations after
every traversal of the POIs as they are assumed of having sufficient energy (i.e., they
are not battery-constrained) to provide the sweep coverage for a very long time.

Someone may say that existing techniques and algorithms for MINSENSORSWEEP
can be used to solve MINDELAYSWEEP. The idea is to take a solution of MINSEN-
SORSWEEP and see which value of t minimizes the sweeping period for all the POIs.
However, this process needs to be repeated at leastO(log t) times to figure out the right
value of t (since the values starting from 1 upto the right value t need to be checked and
at least a binary search is needed). Moreover, the solution depends on the solution of
MINSENSORSWEEP used. Furthermore, it is worth to note that MINDELAYSWEEP is
a NP-Hard problem. Therefore, we focus on the algorithms that provide good approxi-
mation of the exact solution and run in polynomial time. We give two algorithms each
for Not-Predefined-Start and Predefined-Start scenarios of MINDELAYSWEEP.

– We provide a 2δ-approximation algorithm for the Not-Predefined-Start sce-
nario of MINDELAYSWEEP and a (δ + 2 − 1

k)-approximation algorithm for the
Predefined-Start scenario of MINDELAYSWEEP, where δ is the approximation
ratio of an algorithm for the traveling salesman problem (TSP).

– We provide a 2γ-approximation algorithm each for both the Not-Predefined-Start
and Predefined-Start scenarios of MINDELAYSWEEP, where γ is the approxima-
tion ratio of an algorithm for the tree cover problem (TC).

Using Christofides’s algorithm [6] to compute the solution for TSP tour, we ob-
tain 3-approximation for the Not-Predefined-Start scenario of MINDELAYSWEEP
and (72 −

1
k)-approximation for the Predefined-Start scenario of MINDELAYSWEEP

(Christofides’s algorithm has the approximation ratio of 1.5 for the TSP tour). Using
the algorithms of Even et al. [8] to compute the solution for TC tours in both Not-
Predefined-Start and Predefined-Start scenarios of MINDELAYSWEEP, we obtain
8-approximation for both of our algorithms (Even et al.’s algorithm has the approxima-
tion ratio of 4 for both the rooted and unrooted versions of TC tours). These bounds
can be improved if we have better approximation factors for both δ and γ. From recent
work on tree and cycle cover problems [14, 19], we can obtain 6-approximations for
our algorithms based on TC tours. To our best knowledge, these bounds are the first
approximation bounds for the NP-hard MINDELAYSWEEP.

Although our solutions look like direct extensions of the existing results on TSP and
TC, no such approximation bounds were known in the literature for MINDELAYSWEEP
(except experimental study with no approximation bounds in [5]). Our study is interest-
ing since it shows that MINDELAYSWEEP is related to the problem of finding k TSP
and TC tours of equal lengths in graphs. Given a solution with k equal length tours, a
solution for MINDELAYSWEEP is no more than the factor of 2 times more than the k
equal length tour solution used to solve MINDELAYSWEEP.

For the TSP based solution for Not-Predefined-Start scenario, we take a TSP tour
and divide that tour into k-subtours in such a way that the approximation obtained from
the division is no more than 2 times the approximation of the one single tour. For the
Predefined-Start scenario, we use the k-splitour concept of Frederickson et al. [9]
(details later) and obtain k trajectories such that the claimed approximation bound is
still satisfied after the trajectories are modified to include the start positions of sensors.
For the TC based solution for both Not-Predefined-Start and Predefined-Start sce-
narios, we use the concept of Even et al. [8] to build k trees such that the approximation
obtained is no more than 2 times the approximation of each tree.

Related Work. There is a vast literature on coverage problems in mobile WSNs, which
can be divided into three main categories: full coverage, barrier coverage, and sweep
coverage. The full and barrier coverage problems are static coverage problems, whereas
the sweep coverage problem is a dynamic coverage problem. The full coverage problem
is heavily studied under area and point coverage [3, 25, 27, 28]. Several papers studied
how mobile sensors can be used to assist static coverage under a hybrid setting of mo-
bile and static sensors. The k-coverage problem through mobile sensors is also studied
in both mobile WSNs and in hybrid setting in [1, 12, 16, 20, 28, 26, 29, 31]. Howard et
al. [13] proposed a potential-field based algorithm and ensured that the initial configura-
tion of the nodes quickly spreads out to maximize coverage area. A virtual-force-based
sensor movement strategy to enhance network coverage is considered in [32].

Kumar et al. [15, 16] studied barrier coverage where the sensors need to form a
barrier to prevent intruders from crossing the barrier. They contributed significantly on
theoretical foundations and provided several local algorithms that work based on limited
neighborhood information. They also studied density requirements for achieving bar-
rier coverage preserving connectivity requirements. These papers [4, 21, 23, 24] studied
several different aspects of barrier coverage. Target coverage problem is considered in
[3, 7, 17] for tracking both static and moving targets.

As we mentioned above, most of the existing works focus on static coverage (full
and barrier) with stationary configurations of sensors. Even with mobile sensors, they

focus mostly on achieving an optimized deployment through their mobility without ex-
ploring dynamic coverage [18]. The concept of this kind of coverage was originally
studied in the context of robotics, e.g. [2], focusing mainly on the coverage frequency.
Li et al. [18] were the first to study sweep coverage which necessitates the dynamic
coverage in the context of mobile WSNs. They studied sweep coverage with the ob-
jective of minimizing the number of mobile sensors (i.e., MINSENSORSWEEP) for re-
quired sweep coverage time period. The sweep time period is given for any POI and
the objective was to fulfill that timing requirement minimizing the number of sensors.
MINSENSORSWEEP is further studied by [10, 11, 18, 22, 30].

Roadmap. We discuss model and preliminaries in Section 2. We then present and an-
alyze two approximation algorithms for Not-Predefined-Start scenario of MINDE-
LAYSWEEP in Section 3. We repeat this process for Predefined-Start scenario in Sec-
tion 4. We conclude in Section 5 with a short discussion.

2 Model and Preliminaries

We consider a set M = {s1, s2, . . . , sk} of k mobile sensors and a set P =
{p1, p2, . . . , pm} of m static POIs in the Euclidean plane R2. We denote by ci the
position of the POI pi ∈ P in R2, which is fixed. Each POI pi ∈ P has a unique
identifier (UID). We denote by dist(pi, pj) the Euclidean distance between two POIs
pi and pj . We assume that mobile sensors si ∈ M move at a constant speed v in R2.
If speed is not the same, then the speed can be taken as a ratio to compute the length
of the trajectory that the mobile sensor should traverse. Each sensor si has the limited
sensing range and the POIs are said to be covered (i.e., visited or scanned) only when
the mobile sensors pass through the positions of the POIs. We assume that the time is
divided into time units and the unit distance corresponds to one time unit.

We consider two scenarios of the problem. In the first scenario, called Predefined-
Start, all the mobile sensors si ∈M start from the predefined positions to scan specific
POIs along their trajectories and they go back to their predefined start positions after one
complete traversal of their trajectories. They then recharge their battery and start their
next traversal. We ignore the time to recharge mobile sensors assuming that it is negli-
gible; if it is not the case then, the recharging delay can also be taken into account while
computing trajectories. This represents a large class of mobile WSN applications where
sensors are highly power-constrained. In the second scenario, called Not-Predefined-
Start, the mobile sensors si ∈ M have no constraint on (battery) power and can scan
POIs in their trajectories for a quite long time without recharging. Therefore, the mobile
sensors do not need to go back to the predefined positions.

We study the sweep coverage problem with the objective of minimizing the cover-
age delay, which we denote by MINDELAYSWEEP. More precisely, we aim to schedule
k mobile sensors inM to scan the m POIs in P such that they delay between subse-
quent visits to POIs by sensors is minimized and each POI is scanned at least once in
one traversal of any sensor. We have the following definitions for MINDELAYSWEEP.

Definition 1 ([18]). A POI is said to be t-sweep covered by a sweep algorithm F if and
only if it is covered at least once every t time units by the sensors scheduled by F .

Definition 2 ([18]). A set of POIs are said to be globally sweep covered by a sweep
algorithm F if and only if every POI pi is ti-sweep covered under F .

Definition 3. The sweep coverage delay is the maximum ti among POIs under F .

Definition 4. Given a set of k mobile sensors and a set of m POIs, the sweep coverage
delay minimization problem, MINDELAYSWEEP, is to schedule k mobile sensors to
globally sweep cover the POIs such that the sweep coverage delay is minimized.

GivenM and P in the Euclidean plane R2 and Not-Predefined-Start scenario, the
deployment of the POIs in P can be represented by an undirected weighted complete
graph G = (V,E,w), where V is the set of all POIs in P and, for any two POIs pi
and pj , there is an edge between them, i.e., (pi, pj) ∈ E. Moreover, there is a weight
function w : E → R+ such that w(e) = dist(pi, pj) for an edge e = (pi, pj) ∈ E. We
denote by cmax := maxe∈E w(e), the maximum weight edge in E.

In Predefined-Start scenario, the deployment of the POIs in P and the sensors in
M can be represented by an undirected weighed graph G′ = (V, V ′, E′,w), where
V is the set of all POIs in P , V ′ is the set of predefined start positions of the mobile
sensors in M, for any two POIs pi and pj , there is an edge e = (pi, pj) ∈ E′, and
w(e) = dist(pi, pj). Furthermore, for any start position si and any POI pj , there is an
edge (si, pj) between them such that e′ = (si, pj) ∈ E and w(e′) = dist(si, pj).

GivenG orG′ and k mobile sensors inM, the goal in MINDELAYSWEEP is to find
a set of k trajectories to scan all m POIs in P such that the maximum length among k
trajectories in minimized. MINDELAYSWEEP is NP-hard. Take the Not-Predefined-
Start scenario and |M| = 1 (there is only one sensor inM such that k = 1). This set-
ting is equivalent to finding the minimum length Hamiltonian path that passes through
all POIs in P which is a well-known NP-hard problem. Therefore,

Theorem 1. MINDELAYSWEEP problem is NP-hard.

Since MINDELAYSWEEP is NP-Hard, we look for approximation algorithms. We
use the existing literature on traveling salesman problem (TSP) and tree cover problem
(TC) and derive four approximation algorithms. Two approximation algorithms are for
Not-Predefined-Start scenario and the rest two are for Predefined-Start scenario.

We now provide several definitions which are useful later in the algorithms. A tour
is a path that visits all the POIs starting from some initial vertex (POI) v1 and ends
at the same vertex v1 in G after visiting all the nodes of G exactly once, i.e., R =
{v1, v2, . . . , vm, v1}. Note that two subsequent nodes in R are connected by an edge.
A subtour is a tour that is obtained by dividing the tour R into more than one segments
such that a segment contains all the vertexes in the tourR in the same order starting from
some initial vertex of the subtour to the ending vertex of that subtour. For example, if R
is divided into two tours R1 and R2 starting from v1, then R1 = {v1, . . . , vt, v1} and
R2 = {vt+1, . . . , vm, vt+1}.

A tree cover of a graph G is a set of trees T = {T1, . . . , Tk} such that V =⋃k
i=1 V (Ti). The cost of the tree Ti is defined by Cost(Ti) =

∑
e∈Ti w(e). The cost of

a tree cover T is maxTi∈T Cost(Ti). An r-rooted tree cover of a graphG is a tree cover
T , where each tree Ti ∈ T has a distinct root r ∈ Z , where Z ⊂ V denotes a set of
root nodes. Note that the roots of Ti and Tj for i 6= j must be distinct. However, trees
may share some nodes and edges to other trees.

3 TSP Tour Based MINDELAYSWEEP Algorithms

We present two algorithms, Not-Predefined-Start-TSP and Predefined-Start-TSP.
Not-Predefined-Start-TSP is suitable for Not-Predefined-Start scenario of MIN-
DELAYSWEEP and Predefined-Start-TSP is suitable for Predefined-Start scenario.

Not-Predefined-Start-TSP Algorithm. The pseudocode of Not-Predefined-Start-
TSP is given in Algorithm 1. The basic idea behind Not-Predefined-Start-TSP is
to find a trajectory for each sensor and ask that sensor to cover (scan) the POIs that
are in that trajectory. To find the trajectories, we use the the well-known ideas on con-
structing a TSP tour and dividing the tour to obtain k trajectories. For the TSP tour
construction in G, Not-Predefined-Start-TSP selects a node, say v1, among the POIs
as a starting vertex and uses a known algorithm for TSP (say Christofides [6]).

Denote the TSP tour obtained through this construction by R :=
{v1, v2, . . . , vm, v1} and let Cost(R) = L. R is then divided into k-subtours (or
trajectories), say Rj , 1 ≤ j ≤ k, of almost equal length starting from v1. The
division process works as follows. Let cmax be the longest edge in R. Then, cmax

is removed from R such that L = L − cmax. Now, starting from v1, the POIs that
fall in R upto length L/k are assigned to R1 such that R1 = {v1, . . . , vl(1)}, where
vl(1) the last vertex in R1. Similarly, starting from v1, the POIs that fall in R upto
length 2L/k except the POIs that are already in R1 are assigned to R2 such that
R2 = {vl(1)+1, . . . , vl(2)}, where vl(2) is the last vertex in R2. According to this
division, Rk = {vl(k−1)+1, . . . , vn} and we have k sub-tours. Moreover, we have that
Cost(Ri) and Cost(Rj), 1 ≤ i, j ≤ k, i 6= j are at most the factor of 2 from each
other. The reasoning is that R is divided in to equal fragments and the length of the
edge between the last POI of one sub-tour and the first POI of next subtour changes
the length of each fragment only by the factor of 2. These k subtours are updated by
adding the starting vertex of each subtour at the end of that tour to obtain one trajectory
such that R1 = {v1, . . . , vl(1), v1}, R2 = {vl(1)+1, . . . , vl(2), vl(1)+1}, and so on. As
sensors do not have predefined start positions and there are k sensors, these sensors
are randomly assigned to traverse k trajectories computed. We prove the following
theorem for the approximation ratio of Not-Predefined-Start-TSP.

Theorem 2. The approximation ratio of Not-Predefined-Start-TSP is at most 2δ,
where δ is the approximation ratio of an algorithm for TSP.
Proof. Let LOPT be the length of the optimal tour for TSP inG. Moreover, let L be the
length of the TSP tour obtained using an algorithm for TSP. We have that L = δ ·LOPT ,
where δ be the approximation ratio of an algorithm used to compute the TSP tour. Since
the tourR is divided into k subtours, we have that the time tTSP required to sweep each
subtour Rj is such that tTSP ≤ 2δ·LOPT

v . This is because the lengths of the subtours
are within the factor of 2 from each other. Let tOPT be the time period in the optimal
solution. In other words, there is a sweep algorithm A in which if we use k sensors
moving at constant speed v each sensor will be visited in minimum time units. AsLOPT
is the length of the shortest route for the corresponding TSP, we get tOPT ≥ LOPT

v for
one mobile sensor. Therefore, the approximation ratio of Not-Predefined-Start-TSP

is bounded by tTSP
tOPT

≤
2δ·LOPT

v
L
v

≤ 2δ. ut

Algorithm 1: Not-Predefined-Start-TSP
1 Pick a POI v1;
2 Use an algorithm for TSP and find a TSP tour R = (v1, v2, v3, . . . , vn, v1) with

Cost(R) = L;
3 Let cmax be the longest edge in R. Remove cmax from R such that L = L− cmax;
4 For j ≤ 1 to j < k do
5 Find the last POI vl(j) such that the cost of the path from v1 to vl(j) along R is not

greater than j
k
L;

6 Obtain k subtours as
7 R1 = (v1, . . . , vl(1)), R2 = (vl(1)+1, . . . , vl(2)), . . . , Rk = (vl(k−1)+1, . . . , vn),
8 Add an edge from the last node in each subtour to its first node such that
9 R1 = (v1, . . . , vl(1), v1), R2 = (vl(1)+1, . . . , vl(2), vl(1)+1), . . . ,

Rk = (vl(k−1)+1, . . . , vn, vl(k−1)+1),
10 Assign one sensor to each Rj , 1 ≤ j ≤ k;

Since Christofides’s algorithm [6] has approximation 1.5, we obtain:

Corollary 1. Using Christofides’s algorithm [6] for TSP tour, Not-Predefined-Start-
TSP achieves the approximation ratio of at most 3 for MINDELAYSWEEP.

Predefined-Start-TSP Algorithm. The pseudocode of Predefined-Start-TSP algo-
rithm is given in Algorithm 2. The main idea of this algorithm is to find a TSP tour R
similar to Not-Predefined-Start-TSP. However, due to the predefined start positions
of the sensors, R need to be carefully split into k subtours and also the sensors needs
to be carefully assigned to cover the POIs in those subtours. We use the approach of
Frederickson et al. [9] to divide the tour R into k-subtours. Moreover, after the tour
is divided into k-subtours, the mobile sensors that minimizes the cost Cost(si, Rj) is
assigned to Rj to provide the coverage for the POIs in Rj , where Cost(si, Rj) is the
minimum distance from the position of any sensor si ∈M to any node in subtour Rj .

The k-SPLITOUR algorithm of Frederickson et al. [9] starts from some ver-
tex, say v1, and finds the last POI vl(j) in R such that the cost of the path from
v1 to vl(j) is not greater than j

k (L − 2cmax) + cmax, where cmax is the maximum
weight of an edge in E. Then it forms k subtours as R′1 = {v1, . . . , vl(1)}, R′2 =
{vl(1)+1, . . . , vl(2)}, . . . , R′k = {vl(k−1)+1, . . . , vn}. Each subtour R′j is assigned
to a sensor si ∈ M which minimizes the cost Cost(si, R

′
j). Finally, each sub-

tour R′j is updated by adding the sensor that assigned to cover it in the beginning
and end to get Rj , i.e., if a sensor si is assigned to R′j , then we have that Rj =
{si, vl(j−1)+1, . . . , vl(j), si}. That is, Rj is the trajectory for sensor si. We prove the
following results for the approximation ratio achieved by Predefined-Start-TSP.

Lemma 1. Let Ck be the cost of the largest of the k-subtours generated by Algorithm
2. Algorithm 2 guarantees that Ck ≤ L

k + 2cmax(2− 1
k).

Proof. We have that Cost(R′1) ≤ 1
k (L−2cmax)+ cmax. Similarly, Cost(R′k) ≤ 1

k (L−
2cmax) + cmax. For each j, 1 ≤ j ≤ k − 2, Cost(R′j) ≤ 1

k (L− 2cmax).
Now, while updating the tours by adding the sensors that are assigned to the

subtour, we have that Cost(R1) ≤ Cost(R′1) + Cost(v1, s1) + Cost(vl(1), s1). We
have that Cost(s1, v1) + Cost(vl(1), s1) ≤ 3cmax due to triangle equality, since

Algorithm 2: Predefined-Start-TSP
1 Pick a POI v1;
2 Use an algorithm for TSP and find a TSP tour R = (v1, v2, v3, . . . , vn, v1) with

Cost(R) = L;
3 For j ≤ 1 to j < k do
4 Find the last POI vl(j) such that the cost of the path from v1 to vl(j) along R is not

greater than j
k
(L− 2cmax) + cmax;

5 Obtain k-tour by forming k subtours as
6 R′1 = (v1, . . . , vl(1)), R′2 = (vl(1)+1, . . . , vl(2)), R

′
k = (vl(k−1)+1, . . . , vn),

7 Assign each subtour R′j to mobile sensors si ∈M such that
c(si, R

′
j) ≤ c(sm, R′j), si 6= sm;

8 For j = 1 to j = k do
9 Update the subtour R′j by adding sensor sj assigned to it in its beginning and end and

denote it by Rj ;

Cost(v1, vl(1)) ≤ cmax. Therefore, Cost(R1) ≤ 1
k (L − 2cmax) + 4cmax. Sim-

ilarly, Cost(Rk) ≤ 1
k (L − 2cmax) + 4cmax. For each j, 1 ≤ j ≤ k − 2,

Cost(Rj) ≤ Cost(R′j)+Cost(sj , vl(j)+1)+Cost(vl(j+1), sj). Moreover, we have that
Cost(sj , vl(j)+1) + Cost(vl(j+1), sj) ≤ 4cmax.

Thus, Ck = maxj Cost(Rj) ≤ 1
k (L− 2cmax) + 4cmax ≤ L

k + 2cmax(2− 1
k). ut

We immediately have the following lemma for the optimal cost.

Lemma 2 ([9]). Let C∗k be the cost of the largest subtour in an optimal solution for the
k-subtours. We have that C∗k ≥ 1

kC
∗, where C∗ is the cost of an optimal TSP tour.

Theorem 3. Predefined-Start-TSP achieves the approximation ratio of at most δ +
2− 1

k , where δ is the approximation ratio of an algorithm for TSP.

Proof. We have that L ≤ δC∗, where C∗ is the cost of the optimal solution for TSP.
Moreover, we have that C∗k ≥ 1

kC
∗, and due to traingle inequality, cmax ≤ 1

2C
∗
k [9].

Therefore, combining Lemmas 1 and 2, and substituting L, cmax, and C∗k by their val-
ues, the theorem follows. ut

Corollary 2. Using Christofides’s algorithm [6] for TSP tour, Predefined-Start-TSP
achieves the approximation ratio of at most 7

2 −
1
k for MINDELAYSWEEP.

4 Tree Cover Based MINDELAYSWEEP Algorithms

We present two algorithms, Not-Predefined-Start-TC and Predefined-Start-TC.
Not-Predefined-Start-TC is suitable for Not-Predefined-Start scenario of MINDE-
LAYSWEEP and Predefined-Start-TC is suitable for Predefined-Start scenario of
MINDELAYSWEEP.

Not-Predefined-Start-TC Algorithm. The pseudocode of Not-Predefined-Start-
TC is given in Algorithm 3. Not-Predefined-Start-TC uses an unrooted tree cover
construction algorithm Unrooted-TC(G, k,B) to compute a set of k trees T =

Algorithm 3: Not-Predefined-Start-TC
1 Use an algorithm Unrooted-TC(G, k,B) for the unrooted version of TC problem and

find a set of k trees T = {T1, . . . , Tk};
2 Transform each tree Ti ∈ T into a tour Pi using an appropriate tour construction

algorithm given a tree;
3 Assign a mobile sensor to each tour Pi to cover the POIs that are in that tour;

{T1, . . . , Tk}. These k trees are then converted to k tours and assign one sensor in
each tree to scan the POIs that belong to those trees.

We discuss here the Unrooted-TC(G, k,B) algorithm of Even et al. [8] to compute
a set T of k trees given as input these three parameters: the graphG, the number of trees
k (which is equal to the number of mobile sensors inM), and a bound on the cost of
each tree B. Unrooted-TC(G, k,B) then either returns that the bound B chosen for
the cost of the tree is too small or finds a tree cover T = {T1, T2, . . . , Tk} of cost at
most 4B for each Ti, 1 ≤ i ≤ k.

Unrooted-TC(G, k,B) of Even et al. [8] works as follows. It first removes the
edges of G with weight larger than B. This may divide G into a set of connected com-
ponents which are denoted by {Gi}. Then a minimum spanning treeMSTi is computed
for each Gi. After that Cost(MSTi) is computed and this cost is divided by 2B to de-
termine the number of trees ki required to cover the vertices in Gi. If

∑
i(ki + 1) > k

for ki determined for every Gi, then it gives more than k trees which means that the
estimate ofB is small and Unrooted-TC(G, k,B) has to repeat this process with larger
B such that

∑
i(ki + 1) is equal to k. We need exactly k trees since we have k sen-

sors in M. When
∑
i(ki + 1) = k, then each MSTi is decomposed to ki + 1 trees

T ji such that Cost(T ji) ∈ [2B, 4B), where 1 ≤ j ≤ ki. The leftover of MSTi af-
ter constructing ki trees is assigned to Li which is called the leftover tree. Therefore,
Unrooted-TC(G, k,B) returns in total k trees and Even et al. [8] showed that the cost
of each tree is at most 4B.

Not-Predefined-Start-TC then transforms the k trees obtained using Unrooted-
TC(G, k,B) into k tours as follows. For each edge (i, j) ∈ T , we ask Not-Predefined-
Start-TC to add another edge between i and j with the same weight w(ij). Note that
the subgraph consisting only of the edges in T and these new duplicate edges provides
an Euler cycle. Note also that the total cost of the Euler cycle is 2 times Cost(T).
Let P be that cycle. Then the tour is obtained as follows. If P has a sequence like
i, j, l, . . . , o, i, p, then we replace it by i, j, l, . . . , o, p (removing the second i in the
sequence). The difference here in the total cost of P is only due to the deletion of the
second i. As the edge weights in G satisfy triangle inequality, we have that w(op) ≤
w(oi) + w(ip). Therefore, this shortcut process does not increase the cost of P and it
is within 2 times the cost of T .

Even et al. [8] proved the correctness of Unrooted-TC(G, k,B) in the sense that it
returns a set of k trees with desired properties if proper cost bound B is provided as an
input. Our discussion of the Unrooted-TC(G, k,B) algorithm of [8] for T construction
is for an illustration purpose and other available algorithms for the unrooted tree cover
problem can also be used in Line 1 of Algorithm 3 to compute T . Therefore, we focus
here on the general approximation ratio achieved by Not-Predefined-Start-TC.

Theorem 4. The approximation ratio of Not-Predefined-Start-TC is at most 2γ,
where γ is the approximation ratio of an algorithm for the unrooted version of TC.

Proof. Let γ be the approximation ratio of the algorithm used to compute the solution
for the unrooted version of TC. In the tour construction process, we increased the cost
of each tree by a factor of at most 2. Therefore, the approximation of Not-Predefined-
Start-TC is at most 2γ. ut

Since Even et al.’s algorithm [8] has the approximation ratio of 4 for the unrooted
version of TC, we obtain the following corollary.

Corollary 3. Using the Even et al.’s algorithm [8] Unrooted-TC(G, k,B), Not-
Predefined-Start-TC achieves the approximation ratio of 8 for MINDELAYSWEEP.

Predefined-Start-TC Algorithm. The pseudocode of Predefined-Start-TC is given
in Algorithm 4. Predefined-Start-TC uses a rooted tree cover construction algorithm
Rooted-TC(G, k,B) to compute a set of k trees T = {T1, T2, . . . , Tk} such that each
tree Ti is rooted at a start position of a sensor. These k trees are then converted to k
tours using an appropriate tour construction algorithm and the sensor that is in the start
position (i.e., the root of the tree) is asked to to scan the POIs that fall in those trees.

We discuss here the Rooted-TC(G, k,B) algorithm of [8] which takes as input the
same three parameters as in Unrooted-TC(G, k,B). Rooted-TC(G, k,B) then either
returns that the bound B chosen for the cost of the tree is too small or finds a tree cover
T = {T1, T2, . . . , Tk} of cost at most 4B for each Ti, 1 ≤ i ≤ k.

Rooted-TC(G, k,B) removes edges with weights greater than B and compute k
different minimum spanning trees Ti with k different roots as the starting positions of
the sensors. Some of the trees in Ti can be empty in the sense that they may contain only
the root node. Rooted-TC(G, k,B) then decomposes each tree Ti into j trees such that
Cost(T ji) ∈ [B, 2B), for every j, and assign the leftover of the tree Ti after dividing
it into j trees to the leftover tree Li. According to the construction Cost(Li) < B.
Each tree Cost(T ji) is then matched to the roots that are at distance at most B from
it. If not all tree are matched, then it is the case that the bound B chosen is too small
and Rooted-TC(G, k,B) repeats this k tree construction and matching by choosing a
larger value of B. If all trees are matched then Rooted-TC(G, k,B) returns k trees
rooted at the start positions of k sensors.

The Predefined-Start-TC algorithm then transforms the k trees obtained us-
ing Rooted-TC(G, k,B) into k tours similar to the technique we discussed in Not-
Predefined-Start-TC. Each tour Pi constructed for the tree Ti has the cost that is at
most 2 times the cost of Ti.

Even et al. [8] proved the correctness of Rooted-TC(G, k,B) in the sense that it
returns a set of k tree with desired properties of proper cost B is provided as an in-
put. Similar to Not-Predefined-Start-TC, our discussion of the Rooted-TC(G, k,B)
algorithm of [8] for T construction is for an illustration purpose and other available
algorithms for the rooted tree cover problem can also be used in Line 1 of Algorithm 3
to compute T . Therefore, we prove the following theorem.

Theorem 5. The approximation ratio of Predefined-Start-TC is at most 2γ, where γ
is the approximation ratio of an algorithm for the rooted version of TC.

Algorithm 4: Predefined-Start-TC
1 Use an algorithm Rooted-TC(G, k,B) for the rooted version of TC problem and find a

set of k trees T = {T1, . . . , Tk} rooted at the start positions of k sensors (the roots are
different for each tree);

2 Transform each tree Ti ∈ T into a tour Pi using an appropriate tour construction
algorithm given a tree;

3 Ask the mobile sensor in the start position that is in that tour Pi to cover the POIs that are
in Pi;

Proof. Let γ be the approximation ratio of the algorithm used to compute the solution
for the rooted version of TC. Predefined-Start-TC modifies the tree cover that is ob-
tained by Rooted-TC(G, k,B) to form a tour in the expense of factor 2 increase in the
cost of each tree. Therefore, the approximation of Predefined-Start-TC is 2γ. ut

Since Even et al.’s algorithm [8] has the approximation ratio of 4 for the rooted
version of TC, we obtain the following corollary.

Corollary 4. Using the Even et al.’s algorithm [8] Rooted-TC(G, k,B) Predefined-
Start-TC achieves the approximation ratio of 8 for MINDELAYSWEEP.

5 Concluding Remarks

We considered the fundamental problem of sweep coverage in mobile WSNs. We stud-
ied this problem with the objective of minimizing the coverage delay given the limited
set of k sensors to cover a set of m POIs in the Euclidean plane. For the future work,
it is interesting to improve the approximation ratios of our algorithms. For the practical
aspect, it is interesting to experimentally evaluate our algorithms, especially the tree
cover based algorithms, on the performance they achieve in real world scenarios.

References

1. Bai, X., Xuan, D., Yun, Z., Lai, T.H., Jia, W.: Complete optimal deployment patterns for
full-coverage and k-connectivity in wireless sensor networks. In: MobiHoc. pp. 401–410
(2008)

2. Batalin, M.A., Sukhatme, G.S.: Multi-robot dynamic coverage of a planar bounded environ-
ment. In: Tech. Report (2002)

3. Cardei, M., Thai, M.T., Li, Y., Wu, W.: Energy-efficient target coverage in wireless sensor
networks. In: INFOCOM. pp. 1976–1984 (2005)

4. Chen, A., Kumar, S., Lai, T.H.: Designing localized algorithms for barrier coverage. In:
MobiCom. pp. 63–74 (2007)

5. Chen, W., Chen, S., Li, D.: Minimum-delay pois coverage in mobile wireless sensor net-
works. EURASIP J. Wireless Comm. and Networking 2013, 262 (2013)

6. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical report (1976)

7. Ding, L., Wu, W., Willson, J., Wu, L., Lu, Z., Lee, W.: Constant-approximation for target
coverage problem in wireless sensor networks. In: INFOCOM. pp. 1584–1592 (March 2012)

8. Even, G., Garg, N., KöNemann, J., Ravi, R., Sinha, A.: Min-max tree covers of graphs. Oper.
Res. Lett. 32(4), 309–315 (Jul 2004)

9. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing
problems. In: FOCS. pp. 216–227 (1976)

10. Gorain, B., Mandal, P.S.: Approximation algorithms for sweep coverage in wireless sensor
networks. J. Parallel Distrib. Comput. 74(8), 2699–2707 (2014)

11. Gorain, B., Mandal, P.S.: Line sweep coverage in wireless sensor networks. In: COMSNETS.
pp. 1–6 (2014)

12. Hefeeda, M., Bagheri, M.: Randomized k-coverage algorithms for dense sensor networks.
In: INFOCOM. pp. 2376–2380 (2007)

13. Howard, A., Mataric, M.J., Sukhatme, G.S.: Mobile sensor network deployment using po-
tential fields: A distributed, scalable solution to the area coverage problem. In: Distributed
Autonomic Robotic Systems 5. pp. 299–308 (2002)

14. Khani, M.R., Salavatipour, M.R.: Improved approximation algorithms for the min-max tree
cover and bounded tree cover problems. In: APPROX/RANDOM. pp. 302–314 (2011)

15. Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: MobiCom. pp.
284–298 (2005)

16. Kumar, S., Lai, T.H., Balogh, J.: On k-coverage in a mostly sleeping sensor network. In:
MobiCom. pp. 144–158 (2004)

17. Li, D., Cao, J., Liu, M., Zheng, Y.: K-connected target coverage problem in wireless sensor
networks. In: Dress, A., Xu, Y., Zhu, B. (eds.) Combinatorial Optimization and Applications,
Lecture Notes in Computer Science, vol. 4616, pp. 20–31 (2007)

18. Li, M., Cheng, W., Liu, K., He, Y., Li, X.Y., Liao, X.: Sweep coverage with mobile sensors.
IEEE Transactions on Mobile Computing 10(11), 1534–1545 (2011)

19. Liang, W., Lin, X.: Approximation algorithms for min-max cycle cover problems. IEEE
Transactions on Computers 64(3), 600–613 (2014)

20. Liu, B., Brass, P., Dousse, O., Nain, P., Towsley, D.: Mobility improves coverage of sensor
networks. In: MobiHoc. pp. 300–308 (2005)

21. Liu, B., Dousse, O., Wang, J., Saipulla, A.: Strong barrier coverage of wireless sensor net-
works. In: MobiHoc. pp. 411–420 (2008)

22. Lu, X., Chen, S., Chen, W., Li, D.: Sweep coverage with mobile sensors on two-way road.
In: Wang, R., Xiao, F. (eds.) Advances in Wireless Sensor Networks, Communications in
Computer and Information Science, vol. 334, pp. 335–345 (2013)

23. Saipulla, A., Westphal, C., Liu, B., Wang, J.: Barrier coverage with line-based deployed
mobile sensors. Ad Hoc Netw. 11(4), 1381–1391 (Jun 2013)

24. Wan, P.J., Yi, C.W.: Coverage by randomly deployed wireless sensor networks. IEEE/ACM
Trans. Netw. 14(SI), 2658–2669 (Jun 2006)

25. Wang, B.: Coverage problems in sensor networks: A survey. ACM Comput. Surv. 43(4),
32:1–32:53 (Oct 2011)

26. Wang, D., Liu, J., Zhang, Q.: Probabilistic field coverage using a hybrid network of static
and mobile sensors. In: IWQoS. pp. 56–64 (2007)

27. Wang, J.: Efficient point coverage in wireless sensor networks. Journal of Combinatorial
Optimization 11, 291–304 (2006)

28. Wang, W., Srinivasan, V., Chua, K.C.: Trade-offs between mobility and density for coverage
in wireless sensor networks. In: MobiCom. pp. 39–50 (2007)

29. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., Gill, C.: Integrated coverage and connec-
tivity configuration in wireless sensor networks. In: SenSys. pp. 28–39 (2003)

30. Xi, M., Wu, K., Qi, Y., Zhao, J., Liu, Y., Li, M.: Run to potential: Sweep coverage in wireless
sensor networks. In: ICPP. pp. 50–57 (2009)

31. Zhou, Z., Das, S., Gupta, H.: Connected k-coverage problem in sensor networks. In: ICCCN.
pp. 373–378 (2004)

32. Zou, Y., Chakrabarty, K.: Sensor deployment and target localization based on virtual forces.
In: INFOCOM (2003)

