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ABSTRACT
Teleoperation encompasses the use of software and hardware
interfaces to remotely control mechanical devices. In such tele-
operational systems, the success of the task often relies on the
factors of high-fidelity command/responses, low latency, and
accurate or high-resolution feedback. Ideally, a telepresence
humanoid robotic system, which faithfully replicates the op-
eratorâĂŹs gesture and accurately relays sensory feedback to
the operator, should achieve tele-embodiment and reciprocally
enable an immersive sense of presence for the remote operator.
In this paper, we propose and explore the feasibility of an
EMG-based control interface for disengagement from a fully
immersive humanoid telepresence robot. Our control interface
enables a human operator to disengage from an embodied
robotic or virtual avatar - where the operator is manually and
verbally constrained by the avatarâĂŹs replication of the oper-
atorâĂŹs gestures. Our system makes use of a support vector
machine (SVM) classifier, with 94
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INTRODUCTION
The field of telepresence has the goal of enabling an operator
to feel like they are in a remote environment through the use
of various technologies [19,22,35,46]. Fully achieving this
feat can amount to a reduction in the time-cost of physical
travel, and would open new opportunities for those with lim-
ited mobility - be it to constraints related to health or age.
At its current state, commercially available telepresence sys-
tems focus on two parts: visual feedback [11] and mobility
[23,40]. Systems such as the VGoTM telepresence robot are
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in essence a video display/camera on a stick that is mounted
on wheel-based platform [54]. Others such as the DoubleTM

[53] telepresence robot or the AMYTM telepresence robot have
similar mobile structures, with the varying difference in the
differential drive - inverted pendulum mechanism. Seemingly,
these commercial systems are designed for the use case of a re-
mote office worker or even a remote student wanting to attend
class. In the remote site, a software application allows the op-
erator to control the movement and direction of the robot while
video streaming the local environment. In parallel, the robot’s
video display video streams the remote userâĂŹs environment
- creating and auditory and visual feedback loop that allows the
operator to engage remotely. More simplistic approaches to
telepresence are found in teleconferences systems that project
a remote attendee across a boardroom. Inherently, to fully-
achieve immersive telepresence factors such sensory feedback
(auditory, visual, tactile), latency, mobility and other factors
involving the manipulation of the remote environment must be
considered and are actively being researched [20,47]. Explor-
ing telepresence even further, we arrive at the notion of tele-
embodiment - with the overarching goal of enabling avatars to
represent a remote human in the real world or even in a virtual
world - in essence, surrogates. Such avatars, be it as virtual
representations or anthropomorphic robots would be required
to faithfully replicate the operator’s gesture and in parallel
accurately interpret and relay any feedback (i.e. visual, audi-
tory, tactile) to the operator. The latter is crucial, for in reality
our actions change the world as much as its feedback changes
us. We can think of this in terms of the sense-think-act cycle
proposed in traditional AI and used to functionally decompose
the tasks of robots. But, the exploration of tele-embodiment
brings forth many challenges beyond those considered in telep-
resence. Social questions arise [37,38,49], questions regarding
appropriate control interfaces, VR sickness, and questions
regarding feedback representation are being researched. In
this paper, we focus on the problem of disengaging from such
embodied avatar; where a fully-immersed operator is manually
and verbally constrained by the avatar’s real-time replication
of the operator’s gestures. To this end, we propose an EMG-
based system that accurately detects tongue gestures which
are interpreted by our robotic system as signals to disengage.
The purpose of our EMG-based âĂIJdisengagementâĂİ sys-
tem is similar to that of assistive technologies that provide
disabled individuals with alternative means of communication
or control. For example, using eye gaze and eye movement to
transcribe words, and the use of tongue gestures as a control
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interface for mechanical systems such as electric wheelchairs
[12,29]

STATE OF THE ART
The study at hand relates to the area of tele-robotics as well as
control interfaces used in robotics. We use the terms "local"
and "remote" to refer to the environment where avatar and
the operator are located respectively. Immersion and Tele-
Embodiment In everyday human interaction, non-verbal cues
such as postures and gestures play an important role in relay-
ing contextual and situational information [4]. Commercially
available telepresence products go an extra step beyond video
conferencing and enable remote users with mobility. Studies
show that these systems increase the local participantsâĂŹ
sense of presence of the remote user, and lead to a reciprocal
sense of presence for the remote user [4,7]. However, the
addition of a physical embodiment (mobile robot) to a video
display showing a live feed of a remote user could yield to
what is known as "dual ecologies" [25]. This creates a sort of
dissonant dual reality for the local participant: a local reality
where the robotic avatar is situated and a reality where the
operator is located remotely. The problem of dual ecologies
arises when the verbal intentions of the remote operator does
not match the bodily projections of the robot (i.e. the gestures
made when asking a question) [24,26]. Although mobility
increases the sense of presence, it is known that the transmis-
sion of information in face-to-face communication combines
the temporal and spatial features of boily gestures and speech.
Thus, the use of such contemporary telepresence systems cre-
ates a "fragmented and relatively ineffective" relationship with
the features or gestures that are symmetric to verbal communi-
cation [16,18]. In essence, it handicaps the remote participant
from fully expressing and conveying a message, and likewise
it may limit the local participant from fully understanding
the intention of such message. To address such issue, the
use of a humanoid telepresence robot, which faithfully acts
as a surrogate, may be required. Such robot is ideal for use
cases where high levels of immersion and tele-embodiment
increase the success of a given task. An example of such
use case can be seen in the use of a humanoid telepresence
patrol robot [FIU - DISCOVERY LAB CITATION]. Due to
the nature of the task, which involves high degrees of social
interaction, the system must not only be mechanically and
programmatically robust but also achieve a high perceptual
level of embodiment on the local participants. The use of
such humanoid telepresence robot that accurately replicates an
operatorâĂŹs gestures and intentions would inherently require
an advance control mechanism. Current approaches include
the use of devices such as gesture capture sensors, integrated
software hardware gesture sensing products such as the Mi-
crosoft Kinect and other hardware/mechanical interfaces such
as joysticks. Looking into the future, the ideal control inter-
face would perhaps be a brain-machine interface that detects a
userâĂŹs intention of movements as well as the intention to
disengagement through the readings of neurons firing - mind
control. This would lead to perhaps the efficient and seamless
control of avatars or mechanical systems just with thoughts
[27,28,32,41]. EMG Interfaces Human-robot control inter-
faces have been proposed in the past decades, ranging from

the use eye movements, speech and most commonly the use
of EMG sensors. The use of each of these types of interfaces
has their limitations. When biosignal or camera-based control
interfaces are applied to embodied robotics or virtual avatars,
the range of tracking areas may vary from a partial to total
body [2,14,15,33,45]. Therefore, various movement patterns
including specific hand and finger gestures may function as in-
put control signals of tele-robotic operation. In such scenario,
following body parts or whole body gesture would not be suit-
able to indicate engage or disengage commands. Furthermore,
the use speech/voice is not always suitable for suitable noisy
environments, and eye-based and even EMG based interfaces
can be obtrusive. The application of EMG-based interfaces
can be seen in literature that addresses the field of assistive
technologies [30,48], where the user suffers from a medical
condition that incapacitates them the use of other faculties
such as their hands to control mechanical devices such as elec-
tric wheelchairs. Beyond assistive technologies, the literature
addresses the use of EMG-sensors as the control interfaces
for anthropomorphic robotic parts such as arms [3,21]. Fur-
thermore, the use of tongue-based user interfaces has been
explored [30,52], some of which rely on different technologies
such optical sensors [43]. However, in this paper we solely fo-
cus on tongue gesture classification, using EMG sensors, with
the intention of providing a mechanism for disengagement
from a fully-immersive telepresence avatar. In comparison, to
other EMG-based tongue classification systems which use up
to 22 EMG-sensors for the classification of 6 tongue gestures
[44,48], our system only uses only 5-EMG sensors to classify
6 tongue gestures with an accuracy of 94EMG Signal Classi-
fication Human Machine Interfaces (HMI) have extensively
used EMG sensors to enable humans to control mechanical
systems. These mechanical systems include, physical tools,
robotic prostheses and even computer programs [36]. These
electrical signals are formed by physiological variations in
the state of muscle fibers. The combination of muscle fiber-
sâĂŹ electro-potentials form what is known as a motor unit
action potential (MUAP) [42]. EMG sensors non-invasively
detect MUAP signals, which can later be used for diagnosis
of illnesses or to analyze signal patterns. The analysis of such
signal patterns enables the creation of systems that can identify
muscle movement with a high degree of accuracy. To create
such accurate systems the challenges posed by the field of sig-
nal processing must be addressed. These challenges include,
but are not limited to, the removal signal noise influenced by
the physiological and anatomical nature of muscles, as well
as noise produced by the experimental setup [42]. During
our experiment - due to the anatomy under the chin, our ini-
tial collection of data experienced the phenomenon known
âĂIJcrosstalkâĂİ [13,51]. Essentially, unmonitored muscles
contaminated the desired signal information. The latter was
addressed by the relocation of the electrodes. It is worthy
to note that other anatomical features affect the collection of
signals, i.e. the amount of tissue between electrodes and con-
tracting muscles or excess body fat [1,10]. After collecting
the signal data, a preprocessing step often takes place which
consists of segmenting the data, followed by filtering and rec-
tification of the data. A series of high-pass and low-pass filters
are available to address issues such as that of electromagnetics



noise, motion artifacts created by moving cables, and internal
noise [36]. Following the preprocessing step, for each divided
segment a feature set is computed by what is known as feature
extraction. Feature extraction plays a crucial role in achiev-
ing better classification accuracy. This process involves the
transformation of EMG signal into a feature vector that can be
fed to a machine learning classifier. Various studies propose
different feature extraction techniques in the time domain, fre-
quency domain and time-frequency domain or a combination
[50]. These techniques include mean absolute value (MAV),
root mean square (RMS), autoregressive (AR), discrete and
continuous wavelet transforms (DWT)(CWT) just to name a
few [8,36,39]. Finally a machine learning algorithm is used to
create a predictive model. Machine learning classifiers often
used on EMG data include, support vector machines (SVM),
feedforward artificial neural networks (ANN), recurrent neural
networks (RNN), linear discriminant analysis (LDA) [8]. In
effort to achieve better results, data reduction techniques such
as principal component analysis (PCA) are often used.

METHODS
In this section, we describe ...
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Data analysis
The acquired surface electromyography (sEMG) was pre-
processed offline using MATLAB R2016a (The MathWorks
Inc., Natick, Massachusetts, USA). The data (2 s per trial)
were detrended to subtract mean values from the signals and
filtered with a IIR comb notch filter to attenuate power noise
and its harmonics. A band-pass filter (16th-order Butterworth,
cutoff frequency between 10 and 500 Hz) was implemented to
suppress high-frequency noises and artifacts due to movement.
For feature extraction, a single preprocessed dataset from each
channel was truncated into windows of 128 samples without
overlapping based on time scaling, and the root-mean square
(RMS) value, which denote the average sEMG amplitude,
of each window was calculated according to the following
equation:

Classification
Classification using SVM We used C-SVC (C-Support Vec-
tor Classification) algorithm implemented in LIBSVM [6].
LIBSVM implements the âĂIJone-against-oneâĂİ technique
(Knerr et al., 1990) for multi-class classification; this tech-
nique reduces multi-class classification into multiple binary

classification problem. The classification problem is described
as follow: Let k be the number of classes, then (k(k-1))âĄĎ2
classifiers would constructed. Each classifier then trains data
from two classes. Then, for training data from the i-th and
j-th classes, we solved the following two-class classification
problem.

subject to

C >0 is the penalty parameter of the error term. We use the
radial basis function (RBF) described below: Radial basis
function (RBF):

Here, Îş, is a kernel parameter. Notes on SVM As literature
states, scaling is very important when using SVM. It is often
recommended to linearly scale each attribute to the range [-
1, +1] or [0, 1] [6]. Prior to building the model, the values
obtained from the signal preprocessing step are normalized on
the above scale. Note that this means that our test dataset had
to be scaled prior to using it as input to test the model. For
our use case, we chose the radial basis function as our kernel
function. Due to the nonlinear correlation between attributes
of our EMG data and the class label, the RBF kernel was
chosen. The selection of our preprocessing step i.e. window
selection affected our decision to choose the RBF kernel -
since, the RBF kernel is not suitable for datasets with large
number of features [6].

As noted by the function, the parameter that we need to
"search" for ar: C and Îş. The goal then becomes to find such
(C,Îş), which provide us with a classifier that predicts tongue
gesture classes with high accuracy. Many computational meth-
ods exist for finding (C,Îş) [6,17]. For our use case, we chose
to perform grid-search with a 10-fold cross validation. Overall,
grid-search can be seen as a simplistic approach that entails
doing an exhaustive parameter search through approximations
[17]. As noted by Lin, C., since (C,Îş) are independent grid-
search can be parallelized. Our dataset and source code can
be found on [SOURCE CODE CITATION].

RESULTS
In this section, we ...

Table 2 shows the accuracy level of the classifier trained using
each subjectâĂŹs data. The average accuracy of the tongue
interface on both subjects is of 94%. Each individual classifiers
provides an accuracy of 97Table 3 shows the confusion matrix
of subject 1 which represents the classification accuracy of the
tongue classifications. The highest misclassifications occur
between on the forward tongue gesture, where the gesture is
classified as an up or down gesture. This can be a result of
the similarity between the tongue gestures and noise artifacts
resulting from the execution of the gesture and placement of
the EMG sensors.

DISCUSSION

Limitation
Closed-mouth In this experiment, tongue gestures were only
classified with closed mouth. To be applied practically, the
proposed EMG-based interface should be able to distinguish



between talking or unintentional tongue movements and a com-
bination/sequence of intentional tongue motions with closed
mouth for engaging/disengaging mode changes. Generalized
model To further emphasize, the challenges of signal noise
greatly affect the creation of a generalized classifier that can
accurately classify tongue gesture across any subjects. For ex-
ample, amplitude of sEMG can be decreased exponentially due
to variant anatomical and biological factors such as increased
distance between muscle fibre and electrodes, composition of
fibre type, and muscle structure [1,9,10,31,34]. As mentioned
in previous sections, moreover, EMG crosstalk often contami-
nate signals; thus, different placement of electrodes between
subjects and even within same participant at different dates
may introduce signals of different muscles [5,9]. Challenges
related to signal noise must be carefully taken into considera-
tion to develop a production-ready device. For instance, the
design of device should be able to adjust electrode placements
dependent on anatomical structures of the userâĂŹs under
chin. Furthermore, the system also needs to be flexible with
respect to different speed and path of movements between
trials within same user or participants. This would then lead
to a stable accuracy in prediction.

Future Work and Other Applications
Our future efforts are focused on (1) the creation of a gener-
alized tongue-gesture control system, (2) identifying a user-
friendly way to activate the system, (3) exploring a system,
which uses an ensemble of different approaches, i.e. voice
recognition along with an EMG-based approach. Further sub-
sequent research is focused on merging such EMG interface
with other control modalities, i.e. allowing an augmented real-
ity overlay to be displayed after the system receives a tongue
signal. Such display, for example, can then allow the operator
to choose a range of options via the use of manual gestures or
arm motions. Such options would include the modulation of
display settings and volume while the operator is engaging in
a virtual environment. In the near future, we plan to further
develop the system, apply in virtual environment, and detect
userâĂŹs intention in real-time. Combination of tongue ges-
tures as an ultimate means of interface in our experiment will
not only vary the number of commands but also create distinct
patterns different from features derived by speaking or other
voluntary tongue movements.

CONCLUSION
In conclusion, this paper presented an EMG control interface
for the disengagement, of an immersed operator, from a re-
mote or virtual environment. The interface consists of 5 EMG
sensors, which are placed below the suprahyoid bone. More
specifically the sensors are placed above the surface of the (1)
geniohyoid and mylohyoid (above the hyoid bone), (2) left
side of mylohyoid, (3) right side of mylohyoid, (4) between
digastric (posterior belly) and stylohyoid on the left side, and
(5) between digastric (posterior belly) and stylohyoid muscles
on the right side. The readings from these sensors were then
used to train a support vector machine classifier, which classi-
fied a userâĂŹs tongue gesture with an average 94% accuracy.
A specific set of tongue gestures can then be translated to the

userâĂŹs intention to disengage from the remote environment
or virtual world.
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