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Abstract— Modern day prosthetics are traditionally 

controlled using EMG readings, which allow the user to control a 

limited number of degrees of freedom at one time.  This creates a 

serious disadvantage compared to a biological arm because it 

constrains the fluid motion and dynamic functionality of the 

device. We present a novel architecture for controlling a 

transhumeral prosthetic device through the combination of 

several techniques, namely computer vision algorithms operating 

on “eye gaze” data, traditional prosthetic control methods, and   

the operator’s motion capture data. This sensor fusion allows the 

prosthetic device to locate itself in a 3D environment as well as 

the locations of objects of interest. Moreover, this architecture 

enables a more seamless motion and intuitive control of the 

prosthetic device. In this paper, we demonstrate the feasibility of 

this architecture and its implementation with a prototype.  

Keywords—Computer Vision; Biosignal Motion Capture; 
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I. INTRODUCTION  

Prosthetics are artificial devices that replace injured or 
diseased body parts, and are externally worn or surgically 
implanted on the body. The main types of prosthetic arms are 
transradial (prosthesis attached below the elbow) and 
transhumeral (prosthesis attached to the upper arm when the 
elbow joint is missing). Two primary ways for operating a 
prosthetic arm are body-powered (attached to the body with a 
harness and cables) and myoelectric (controlled by electric 
signals from the residual muscle); the latter being the preferred 
control method and therefore the one used in this paper. In a 
myoelectric controlled prosthesis, the electric signals measured 
from the residual muscles are processed into commands that 
tell the prosthesis to open or close the hand, twist the wrist, or 
bend the elbow [1]. Traditional upper extremity prosthesis have 
at least 3 DOF (degrees of freedom), which cannot be 
simultaneously operated with ease [2]. Such devices have a 
disadvantage compared to anthropomorphic arms that have 22 
DOF [2]. 

On the other hand, computer vision is being widely used in 
robotics to determine the location of the robotic system and the 
positioning of the objects around it in space. Examples include 
famous robotics systems like Honda’s ASIMO and Boston 
Dynamics ATLAS. Also, recently released wearable 
technologies such as the Google Glass have given us a 

powerful interface to the user, as well as easily accessible real 
time data, in the form of a video stream.  

In this paper, we propose to create a computer vision based 
algorithm using “eye gaze” data from the user, which, along 
with EMG signal processing, will achieve semi-autonomous, 
simultaneous, multi-joint operation of the prosthesis. Our 
solution, unlike the ones described in [1], [3], and [4], provides 
the amputee with a more intuitive and user-friendly human-
machine interface. 

II. STATE OF THE ART 

Several new approaches have been proposed for 
overcoming the limitation of traditional prosthesis control.  

Toledo et al. [2] discussed the different types of upper limb 
prosthesis as well as several state of the art advances in modern 
prosthetics. According to their paper, there is still a large gap 
for improvement because prosthesis on the market as of 2009 
had only 3 DOF, quite far from the 22 DOF of a biological arm, 
and these had to be independently operated using residual 
muscles. This means that fluid anthropomorphic motion of the 
arm is not achievable with the current control methods.  

Shinde et al. [5] proposed a prosthesis design that would be 
strong and reliable while still offering control over the exerted 
forces. The design had to account for mechanical and electrical 
design reliability and compactness. It concluded that the use of 
EMG signals for control of prosthetic arms has been 
historically plagued by the unreliability of the surface EMG 
sensor due to artifacts, wire breakage, inconvenience from the 
electrodes’ doffing and donning procedures, maintenance of 
the skin’s condition, and repeatability of the electrodes’ 
placement. The control of powered upper limb prosthesis has 
not seen any revolutionary developments since its inception, 
but rather, incremental evolution. They showed progress 
towards more natural and effective means of myoelectric 
control by providing high accuracy, low response time and an 
intuitive control interface to the user. 

Using computer vision to control robotic arms is not a new 
concept and extensive research has been done in the area, 
including object recognition, arm positioning, grasping 
estimation, and vision feedback control. However, not much 
research has merged this approach with EMG sensing to semi-
autonomously control an anthropomorphic prosthetic arm.  
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Ashutosh et al. [6] proposes a four part algorithm that uses 
computer vision to control a robotic arm by inferring grasping 
points, perceiving the environment and obstacles, planning a 
path to the target object, and moving the arm to the desired 
position to perform the grasping task. Unlike previous 
algorithms, which assume detailed 3-dimensional models of 
the environment, the proposed algorithm focuses on robustness 
while dealing with uncertain and missing data, which most real 
world applications present.  

The research presented by Puheim and Bundzel expands 
upon a Tracking-Learning-Detection (TLD) algorithm, which 
is able to detect and track an object in a continuous series of 
video frames [7]. The algorithm gives an idea about the 
position of the object in respect to the frame, but no other 
information about the location of the object in the environment 
is given. This is due to the fact that TLD algorithms only 
process 2-dimensional pictures. By using a stereoscopic vision 
camera system, they were able to determine the positions of 
objects in a three-dimensional space quite accurately. Using 
these vision-processing algorithms we can adapt this process to 
aid in the semi-autonomous control of a prosthetic arm and 
give feedback to the user about the real-time objects’ location 
in the 3-dimensional space.  

Our proposed system architecture will fill in the gaps left 
by previously discussed papers. The systems that were 
proposed in those papers have limited control features, and the 
controls are difficult to learn and operate, having control of 
only one degree of freedom at a time. We will merge a 
computer vision algorithm with EMG muscle readings and 
motion capturing to provide the operator a wider range of 
simultaneous multi-joint control. 

 

III. SYSTEM ARCHITECTURE 

Our control system architecture consists of three major 
components, Sensor Feedback Module (SFM), Mechanical 
Motion Control Module (MMCM), Control Management 
Module (CMM) as depicted at Figure 1. 

SFM collects all sensory feedbacks and forwards  them to 
CMM. MMCM controls mechanical prosthetic arms/hands 
based on control messages from CMM. CMM has six 
independent managers that all intercommunicate to achieve 
accurate control of the prosthetic arm. 

• User Interface Manager (UIM) 

• Electromechanical System Analysis Manager (ESAM) 

• Computer Vision Processing Manager (CVPM) 

• EMG Muscle Trigger Detection Manager (EMTDM) 

• Orientation and Motion Capturing  Manager (OMCM) 

• Prosthetic Action Manager (PAM) 

 

The User Interface Manager (UIM) is responsible for 
displaying all interactive data to the interface screen on the 
wearable glass technology. The displayed data includes video 
feed, tracked objects, and user interaction messages. The 
manager receives data from the Computer Vision Processing 
Manager as well as the occasional status message from the 
Electromechanical System Analysis Manager (ESAM).  

The prosthetic arm has many different actuators and 
sensors. Mechanical sensory feedback from these devices is 

Figure 1. System Architecture Overview 



essential to a robust and seamless control of the arm. Multiple 
servos return functioning data such as angular position, 
temperature, and angular acceleration. Other sensors that 
provide control feedback range from potentiometers, current 
sensors, force/pressure sensors, and battery life indicators. All 
of this data is forwarded to the Electromechanical System 
Analysis Manager (ESAM). This manager controls most of the 
error checking and keeps track of the status of all of the 
electromechanical devices in the system. It also forwards status 
data to the user interface upon request. It keeps track of servo 
positions, to prevent the occurrence of joint over extension, and 
to forward these positions to the Prosthetic Action Manager 
(PAM) and Orientation and Motion Capture Manager 
(OMCM).  

The Computer Vision Processing Manager (CVPM) 
receives the real time depth and RGB video stream from the 
vision system. Using a depth and RGB camera mounted on 
wearable glasses technology near the user’s eyes, a real-time 
video stream and pixel depth information can be forwarded to 
the CVPM, representing “eye-gaze” data that is actually 
contained in the user’s field of view. Its first task is to process 
this data into a 3D point cloud so that targetable objects can be 
detected and tracked more easily. The video feed and tracked 
objects are then forwarded to the user interface, which displays 
them to the user. Triggers processed by the EMG Muscle 
Trigger Detection Manager (EMTDM) are forwarded into this 
manager allowing selections to be controlled by the user. The 
selections are also displayed in the user interface. The CVPM 
also calculates the distances and shapes from the selected and 
tracked objects, and forwards this data to the Prosthetic Action 
Manager (PAM).  

EMG muscle sensory feedback includes the physical 
sensors (electrodes), EMG amplifier, and a microcontroller to 
forward the data to the computer for further analysis. The 
electrodes are placed on the operator’s muscles and connected 
to the EMG amplifier.  The EMG amplifier then gets the 
voltage on the user’s skin from the surface electrodes and 
amplifies it so that it can be used to determine the muscle flex 
force.  The amplifier intensifies the analog signal voltage from 
the muscle flex to be later interpreted by the corresponding 
EMG Muscle Trigger Detection Manager (EMTDM). The 
EMG amplifier board will be connected to a microcontroller in 
order to feed the information to a computer. EMG Muscle 
Trigger Detection Manager (EMTDM) then retrieves this data 
and it is used to determine which muscle is being activated.  
Depending on the muscle or combination of muscles being 
activated, triggers are generated to allow the user to select 
which object the arm and hand should adjust itself to grab. 

The Orientation and Motion Capturing Manager (OMCM) 
gathers information about the users head (eye gaze direction), 
body, and limb position. The user orientation and motion 
capture data will be used to determine if the object is out of 
reach for the prosthetic arm/hand. Using sensors known as 
Inertial Measurement Units (IMUs), the angles and skeleton 
information allow us to have position and orientation data 
about any full or partial limb including the users head. With the 
data, the direction in which the user’s arm must move in order 
to assist the prosthetic arm in grabbing an object from a table 

can be determined. It will update the status on whether the user 
must move his/her arm in order to grasp a triggered object. 

The Prosthetic Action Manager (PAM) is the largest 
manager in the system, as it controls several key operations. 
Along with maintaining working status of all other managers, 
the PAM controls how the data from each manager interacts 
with one another. The PAM also combines the input from other 
managers to determine final commands, and send them out to 
the physical prosthesis. 

IV. IMPLEMENTATION  AND EVALUATION 

In this implementation, we excluded the use of Inertial 
Measurement Units (IMUs) because they are not required for 
the proof of concept that computer vision can be combined 
with traditional prosthesis control. Our prosthetic arm is 
composed of several subsystems. They individually realize a 
task and communicate with one another to achieve a common 
goal. Thus, we used simplified control architecture for this 
implementation as depicted at Figure 2. 

Figure 2. Simplified Control Architecture 

• The EMG Sensing board reads the electrical signals 
from the muscles and transmits them to the Control 
and Sensing module through SPI communication to be 
further processed by software on the PC. 

• The arm’s servomotors not only act as actuators but 
also as sensors. They provide information such as their 
current angle, torque, and temperature. Torque and 
position information are used to calculate the relative 
position of the arm to the body or the objects trying to 
be picked up. 

• The control and sensing module acts as an 
intermediary and translator between the PC and the 
Sensors and actuators. It communicates with the PC 
using RS-232 communication and the use of a 
package frame to prevent data misalignment or 
corruption. 

Figure 3: EMG Sensor Board (left) and helmet mounted 

Kinect (right) 
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Figure 4: Elbow connection joint (left) and prototype 

prosthesis (right) 
Our prototype consists of several hardware components and 

sensors. The EMG Signal Board (Texas Instruments 
ADS1299EEG-FE), along with the OpenCM (Figure 3 left), 
controls the forwarding of the muscle signal data to the PC, as 
well as the physical control of the arms’ servomotors. We are 
using 2 of the Robotis Dynamixel MX-106 Servo Actuators. 
Our prototype also uses the Microsoft Kinect sensor (Figure 3 
right) to acquire RGB camera feed and depth information that 
is fed into our computer vision algorithm. We designed and 
assembled a prototype prosthetic arm for testing purposes. 
Figure 4 shows our custom designed and printed bracket that 
allows control of 2 degrees of freedom in the elbow joint. From 
the elbow joint, we attached a temporary forearm, wrist 
rotation servo, and simple gripper attachment. Figure 4 also 
shows an overview of our prototype.  

 

Figure 5: Blob detection algorithm for our prototype 

 

Using the Processing language integrated development 
environment (IDE), we were able to implement a simple color 
based blob tracking algorithm to detect and track target objects, 
the prosthetic arm, and return all of these selectable options to 
the user. Our future implementation uses a more complicated 
3D point cloud approach, where the entire environment is 
mapped as a set of 3D points. This provides several key 
advantages over our prototype blob-detection algorithm. Using 
a 3D point cloud, information about the shape of the object can 
be easily determined for assisting with grasping motions for the 
prosthetic hand. Also, it is an inherently more stable algorithm 
in such a dynamic real-world environment. We implemented 
two separate modes: manual and semi-autonomous. The 
prototype allows for the users to see all valid objects displayed 
on screen, switch between valid objects, and access distance 
information to these objects in the manual mode. In the semi-
autonomous mode, the algorithm calculates the distance to the 
desired object(s) and sends commands to the servos, 

autonomously moving the arm within grasping distance of the 
desired object. 

Figure 5 shows a screenshot of the results of our prototype 
blob detection algorithm. Using a color threshold against a 
uniform white background, we are able to detect which pixels 
are similar in color intensity, and declare them as blob objects. 
We were able to track and label objects in a given seen, 
allowing the user to toggle between possible selectable targets. 
The user is then able to trigger that he/she wants to grasp the 
selected object and our system then finds the location of the 
object in a 3D space and calculates all needed movements for 
the arm to reach its destination. 

When comparing the results of our control method with 
other well proven myoelectric control methods, there are two 
key qualities we concentrated on, speed and ease of operation. 
With traditional control methods, EMG signals can be used as 
triggers to incrementally control the position of the arm as it 
approaches the object. Our system uses these exact signals, but 
not to directly control the actuators. The EMG signals are 
instead used to make selections of available objects in the field 
of view, which the arm can then autonomously interact with 
the object. We expect our system to perform some of these 
simple object manipulation tasks at 10% the time a traditional 
prosthetic would offer, while also presenting an easier to use 
interface for the client. 

 
Figure 6: Setup and initialization of object tracking 

 

 
Figure 7: Object detection and target selection 



 

 
Figure 8: Autonomous motion towards target location 

 
   Figure 9: Object grasping through manual control. 

 

In figure 6, an operator is wearing our prosthetic prototype 

and it has begun its initialization process. Figure 7 

demonstrates how the prototype behaves once the target object 

has been designated. Figure 8 shows how the forearm 

straightens as it approaches the target object, finally getting 

within grasping distance. Figure 9 shows how the operator is 

finally able to retrieve the desired object. 

 

V. CONCLUSION 

Through the implementation of our proposed system, we 
proved that the combination of a computer vision algorithm 
along with EMG muscle readings to create a more seamless 
control structure can be achieved. Our proposed architecture 
allows the user of the transhumeral prosthetic device to easily 
control the toggling between selectable objects for a more 

intuitive human-machine interface. The semi-autonomous 
operation mode achieved by the computer vision algorithm 
provides the user with a less complex control method while 
allowing simultaneous multi-joint control of the prosthesis. 

Our implementation is a proof of concept prototype, and many 
refinements of our algorithms and control approach will result 
in an even better device. Inertial Measurement Units (IMUs) 
should be used to provide a more accurate localization of the 
prosthesis in the camera’s field of view and the user’s physical 
environment. Also a more developed and robust computer 
vision algorithm, based on 3D point cloud object recognition 
techniques will allow an even more enhanced control of the 
prosthesis. Future works also include implementing gesture 
and action recognition in the control algorithm. This addition 
could recognize anything from handshakes, to helping the 
patient interact with everyday tasks like shopping, running 
errands, or even driving. 
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