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Abstract-- Recently, the new motion sensor: the Kinect is 

being used for natural motion retrieval with no additional 

equipment on the operator, less computational demand, and 

it is cost effective. But many restrictions apply because the 

results retrieved from the Kinect include noisy data which 

disturbs precise and smooth robot motion control. We 

propose a simple linearization algorithm to improve the 

accuracy of the data retrieved from the Kinect and designed 

a vectorization algorithm for converting positions of an 

operator's skeleton in three dimensions to robot motions. In 

this paper, we provide the algorithm and its 

implementation. Furthermore, we demonstrate the 

performance of the algorithm using the prototype robot. 

Index Terms--Kinect, Motion Sensor, Humanoid 

Telepresence Robot 

I. INTRODUCTION 

Tele-presence robots are capable of allowing user 

interaction with an environment remotely. This concept is 

used in different applications such as navigation, tele

surgery, sub-sea work, education, and outer-space 

exploration. Some te1e-presence robots are built to 

physically represent their human operators when 

interacting with other individuals in remote areas. Others 

are intended to be an avatar in dangerous environments 

which require effective human to robot interaction. Well 

known tele-presence robots such as QB [1] and Navigoid 

[2] are able to physically represent their human operators 

but they lack key human-like gestures and emotions. The 

Telebot [7,8] is a project that uses the concept of tele

presence to physically enable handicapped military 

veterans and police officers to return to their public duties 

by creating a humanoid robot that is easily and accurately 

controlled by the officer [3]. The Telebots system 

includes a balancing mechanism, head, vision, hand, and 

arm control. Arms are the Telebots primary means of 

manipulating its environment, and their control is the 

focus of this research. They allow the Telebot to defend 

itself, interact with humans by means of a handshake or a 

hug, and even communicate using sign-language. 

Accurate arm motions are therefore a vital component 

of the overall function of any te1e-robot. This paper 

presents a simple Vectorization Algorithm for 

interpreting and then emulating a person's arm movement, 

and a Linearization Algorithm to improve the accuracy of 

the data retrieved from a Kinect sensor. The goal of this 

research is to provide a simple way of using these 

algorithms to control robotic arms that can easily be 

reproduced for any purpose and for any combination of 

sensor hardware and computing software. 

This paper is organized by first explaining our 
methodology, then its implementation, and then finally an 
evaluation of the results. 

II. STATES OF ART 

Various groups have attempted to create solutions to 
accurately translate human arm gestures in a robot using 
the Kinect sensor. Such works include "Real-time 3D 
Object Tracking Using Kinect Sensor" [4] by Takayuki 
Nakamura which uses complex point recognition tracking 
algorithm to determine the changing coordinates of an 
arm in 3D space, and "Design and Implementation of 
Human-Robot Interactive Demonstration System Based 
on Kinect" [5], by Liying Cheng et ai, which uses a 
simple product of vectors to determine the angles 
between different vectors and does not use any filters to 
adjust for noisy data. The two major faults of the current 
research done on arm control is that the Vectorization 
techniques are far too specialized and hard to replicate, 
while the Linearization techniques are lacking in their 
ability to dynamically account of sensor noise. In "Full
Body imitation of human motions with kinect and 
heterogeneous kinematic structure of humanoid robot" 
[5] , Van Young Nguyen attempts to map the obtained 
kinematic data from the Kinect to control a humanoid 
robot, but it falls short in implementing it beyond a 
computer simulation. In "Developing a Gesture Based 
Remote Human-Robot Interaction System Using Kinect" 
[6] , Qian, et al. succeed in controlling a robotic arm using 
the Kinect sensor, however it is limited in that its primary 
function is to recognize and imitate a limited library of 
gestures. 

We address these issues by creating easily replicated 
and broadly applicable Vectorization and Linearization 
Algorithms. 

III. PROPOSED ALGORITHM 

The Vectorization Algorithm (VA) translates new data 
from the optical/depth sensor into usable data. To present 



the V A, we will focus on the angle Alpha in the YZ
Plane. 

Figure 1: X,Y, and Z Shoulder Coordinate System 

A. Vectorization 
The VA is the method we use to calculate the angles 

Alpha, Beta, Gamma, and Delta and it is significant 
because it quantifies the 3D movements of human arms in 
vector space. A 3D environment is created and any 
movement that the optical/depth sensor measures was 
interpreted as changes of angle Alpha between the 

vectors in Fig. 1 X-, Y-, and Z-coordinates. The arm 
vector, which has a fixed magnitude, is created using the 
shoulder point as a fixed XYZ origin (0,0,0), and the 
dynamic X-, Y-, and Z-coordinates of the elbow point as 
it changes in 3D space and is given by the equation: 

(XYZ _Elbow - Point) - (XYZ _Shoulder - Point) 

The arm vectors 3D movements are represented by 
vector projections in two, 2D planes, one which 
represents its movements in the YZ-plane and the other, 
the XV-plane. The arms vector created in the YZ-plane is 
given by the equation: 

(XY _Elbow - Point)(XY _Shoulder - Point) 

Angle Alpha in the YZ-plane combines with angle 
Beta in the XY-Plane created the arms 3D movement. 
Each angle is calculated using the Law of Cosines, and in 
2D space these triangles are right triangles created by the 
dynamic YZ- and XV-vectors and the fixed virtual vector 
pinned to the shoulder point, as shown in Fig. l. The X
axis is not plotted in the YZ-plane, and therefore any 
change in its value is represented as a change in projected 
magnitude of the YZ arm vector. 

Since Alpha is calculated with right triangles, any 
change in the magnitude of the YZ arm vector as a result 
of solitary movement in the X-axis creates similar right 
triangles and therefore Alpha does not change. This is 
how the two planes are separated and their respective 
angles calculated using translated local coordinates. To 

further adjust for rotation that might otherwise decrease 
the accuracy of the angles, Rotate(X, Y, and Z) is used to 
calculate changes in the body's rotation relative to the 
global coordinate system's XY- and YZ- planes. Once an 
offset rotation angle is calculated to be of a certain "x" 
degrees using quaternion calculations, the rotation of the 
joint is compensated and eliminated by an equal and 
opposite " -x" degrees. In this way, as far as the code is 
concerned the body and its joints' rotation do not factor 
into the calculations of Alpha, Beta, Gamma and Delta. 
Angles Gamma and Delta use the exact same method to 
combine two, 2D planes to create 3D movement of the 
elbow joint, as shown in Fig. 2. 

+y 

-y 

Figure 2: X,Y, and Z Elbow Coordinate System 

There are two differences with the elbows servos. The 
first is that they are rotated at a 90 degree angle so that 
the elbows first servo (Servo-3, controlled by angle 
Gamma), which provides rotation, moves in the XZ-plane 
while the second servo (Servo-4 which controls angle 
Delta) moves in the YZ-plane. The second difference is 
that since the elbows rotation is actually physically 
provided by the shoulder, Servo- 3 is instead added as the 
3rd servo on the shoulder joint, as shown in Fig. 3. While 
our VA is accurate, sensor noise obscures the true values 
of the angles, and one way of dealing with this through 
filtering the data through a Linearization Algorithm. 

Figure 3: X,Y, and Z Servo Coordinate System 

B. Linearization 
Limiting noise is possible by using filter algorithms 

that calculate measured values more representative of 
their true values. Many robotics software use Non-Linear 



Filter Algorithms, however these are limited because 
their filtering algorithm does not change dynamically. A 
Linear Filter Algorithm known as the Kalman Filter is 
extremely effective by comparison and our simplified 
Linearization Kalman Filter (LKF) is explained below in 
terms of the angle Alpha. The LKF works in two 
recursive steps that occur during each calculation of 
Alpha. The first step adjusts for magnitude and either 
adds or subtracts the dynamic Expected Measurement 
Variance (ExpM) from the measured value (M). The 
Ex pM is the magnitude of the measurement error we 
expect to get from the optical/depth sensor, and M is the 
angle Alpha resulting from the VA. The ExpM is either 
added or subtracted depending on whether or not the arm 
is moving within certain minimum and maximum sensor 
thresholds that need to be accounted for. The second step 
adjusts for measurement noise by transforming the new 
angle Alpha from the first step by comparing the 
measured value against an expected value using the 
following equations: 

ExpectedEr ror 
Weight= --=-------

ExpectedEr ror + ExpM 

Where Weight is a value between 0 and 1 that 
determines if the expected error of the expected value 
(ExpE) is more or less significant than ExpM. The 
Weight will approach if ExpE is larger than ExpM, 
and it will approach 0 if ExpM is larger than ExpE, 
affecting the new Alpha in the following way: 

Alpha = [(1 -Weight) * (E)] + (Weight) * (M) 

If ExpM is larger than ExpE, then we expect the 
measured value of Alpha to be less accurate than the 
expected values of Alpha, so we give them less weight 
when calculating the new Alpha. The new Alpha will be a 
sum of E added to M with each value adjusted by the 
Weight. The final step is to update these values for each 
iteration by creating a new E by adding a direction and 
velocity metric to the previous value of the new Alpha, 
and testing this against the next M in the same process 
outline above. The direction metric is determined by 
calculating whether the values of E are increasing or 
decreasing between each iteration, and the velocity metric 
is determined by the magnitude of this change. 

IV. IMPLEMENTATION 

Our vectorization and linearization algorithm are 
implemented by Java with OpenNI library and XBox 
Kinect Sensor which provides 20 joint points of a body 
skeleton in 3D space. 

A. Implementation of Vectorization 
The VA sample code segment using the angles, Alpha 

and Beta, which control Servos -1 and -2 for one arm is 
follow: 

Section: 1 
• PVector axis = new PVector(O, 100); 
• PVector axis = new PVector(O, 100); 
• PVector armYZ = new PVector(y , z); 
• PVector armXY = new PVector(x , y); 

Section: 2 
• PVector axis = new PVector(O, 100); 
• PVector axis = new PVector(O, 100); 
• PVector armYZ = new PVector(y , z); 
• PVector armXY = new PVector(x , y); 

Section: 3 
• Alpha = map(Alpha, alphaMax, alphaMin, 

alpha2Max,alpha2Min); 
• Beta = map (Beta, beta2Max, beta2Min, 

beta2Max,beta2Min); 

Implementing the V A begins in Section 1 with the 
creation of three PVectors: axis, arm yz, and arm xy. 
PVector axis creates a stationary vector by which the arm 
vectors in the YZPlane and XY-Plane will be compared. 
PVector arm yz creates the users arm vector movements 
in the YZ-Plane. PVector arm xy creates the users arm 
vector movements in the XYPlane. 
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Figure 4: Logic Flowchart of Code 

Section 2 creates the angles Alpha and Beta by using the 
function angleBetweenO which calculates angles between 
the dynamic PVectors arm yz and arm xy and the fixed 
PVector axis using the Law of Cosines. Section 3 
transforms the angles Alpha and Beta into values that will 
be sent to Servo-l and Servo-2 using the mapO function 
which creates a ratio of Alpha and Betas minimum and 
maximum values (defined by alpha min, alpha max, and 
beta min, beta max) and Servo-l and Servo-2s minimum 
and maximum values (defined by alpha 2 min, alpha 2 
max, and beta 2 min, beta 2 max). The values of alpha 2 
and beta 2 are then sent to Servo-l and Servo-2 
respectively. Servo-l controls the vertical (YZ) 
movement while Servo-2 controls the horizontal (XY) 



movement. The angles Alpha and Beta are sent as a string 
in the format as below. 

< servo id + angle + speed> 

These inputs are sent through a serial port to the 
processor that communicates with the Servos 
independently. The flow of the logic of this entire process 
can be seen in the Flowchart of Fig. 4. 

A sample of 600 iterations of the angle Alpha can be 
found in Fig. 5 and is meant to represent a change in the 
X-axis in the YZ-plane where Alpha should not 
significantly change. It is obvious that the data collected 
from the VA suffers from a significant amount of noise 
that obscures its true values. We can solve this through 
the implementation of the LKF. 

B. Implementation of Linearization 
Implementing the LKF code begins in Section 4 by 

assigning the value of expected value of Alpha (Exp) as 
the function KFilter. The function first determines if the 
measured value of Alpha (M) is within the minimum 
detectable threshold of the Kinect (min detect, which is 
around 25-30 degrees); a lower bound where the Kinect 
overcompensates by adding its own expected 
measurement error. If M is below this threshold, it is 
Ex pM higher than it should be; if M is above this 
threshold, it is ExpM lower than it should be. In Section 5, 
we see the exact same arithmetic previously outlined. The 
new value of Alpha, R is returned and the function is 
completed for this iteration. Exp is updated as the value 
of this returned R. In Section 6, Exp is transformed using 
the direction and velocity metrics, which determine the 
direction the arm is moving in by analyzing if each new 
iteration of Exp is greater or less than the previous value. 
For instance, if the newly updated Exp is greater than its 
previous value (prev), then the velocity metric is added 
because we expect the next value to continue to increase. 
The magnitude of the velocity vector is determined a 
moving average of the magnitude of change at each step. 

Section: 4 
• Exp = KFilter(Exp, M, Err, ExpM); 
• float KFilterAlpha(float Exp, float M, float Err, 

float ExpM); 
• if (M > minDetect ) M = M + Exp.M; 
• if (M < minDetect) M = M - Exp.M; 

Section: 5 
• W = (Err)/(Err+ExpM); 

• R = ((1 - W) * Exp) + (W * M); 
• returnR ; 

Section: 6 
• if ( prev i E ) f 
• DiffAlpha = Exp - prev; 
• StoredDE = DEAlpha; 
• Exp = (Exp + DEAlpha); 

Section: 7 
• AlphaZ = map(Exp, alphaMax, alphaMin, 

alpha2Max, alpha2Min) ; 
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Figure 5: Vectorization Applied to Alpha 

This process modifies the value of the angle Alpha 
sent to Servo-l because the Alpha we obtained by the V A 
has now been put through the LKF, changing the 
previous code to Fig. 5. A sample transformation by the 
LKF on the 600 iterations of the angle Alpha previously 
measured by the VA can be seen in Section 7, which 
shows the rigid troughs and peaks as lessened in the 
graphical representation of the users arm movement in 
the YZ-Plane and what we would expect to see in a 
solitary movement in the X-axis. 

V. EVALUATION 

Evaluating the validity of the VA and its 
implementation is by seeing how the calculated values of 
the Alpha using the VA compare to the absolute values of 
Alpha sent to Servo-I, as shown in Fig. 6. The Alpha 
value sent to Servo-l changed from 0 degrees to 180 
degrees twice over an interval of 800 iterations in Fig. 6. 

VA and lKF Applied to Absolute Positions 
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Figure 6: Comparison between Absolute, Raw, and 

Filtered Data 

These values are known values that have zero noise 
since they are sent directly to Servo-l as test values of the 
angle Alpha, representing the true movement and 



therefore absolute position of Servo-I. The Kinect then 
read and calculated these values using the VA. The 
values are plotted versus their Absolute values, as shown 
in Fig. 6 as the Raw Series. While the V A accomplished 
its task of calculating and then emulating the absolute 
value of the angle Alpha, there is an obvious variance 
present in the form of both noise and an incorrect 
magnitude. One possible way of mitigating this noise is 
through the LKF, which allows for the obscured values of 
Alpha to be transformed into a smooth graph that more 
closely resembles the Absolute movement, as can be seen 
in Fig. 6 as the Kalman Series. The LKF has done a great 
job in reducing the amount of noise that significantly 
reduced the accuracy of Alphas value. Using an integral 
function to determine the accuracy of both the Raw and 
the Kalman series by comparing them to the Absolute 
graph, on average the Raw measured VA values had a 
73.6 percent accuracy, while the LKF values had a 96.3 
percent accuracy. By first calculating the angle Alpha via 
the V A, and then putting it through the LKF, Servo-l will 
move in such a way that it appears to be more accurately 
emulating the users arm movements. This exact same 
method is used with the angles Beta, Gamma, and Delta 
that are sent to Servo-2, Servo-3 and Servo-4. 

(a) Motion I (b) Motion 2 

(e) Motion 3 (d) Motion 4 

Figure 7: Motion Control Implementation Demo 

Our vectorization and linearization algorithm can provide 
proper angles of operator's each joint into a robot 
controller so that our test robot nicely imitates operator's 
motions as depicted on Fig. 7. 

VI. CONCLUSION 

The VA has limitations in its calculating ability at 
certain thresholds when trying to calculate the angles 
Alpha, Beta, Gamma, and Delta. At these thresholds that 
exist around 0 degrees and 180 degrees, the noise from 
our optical and depth sensor reaches its maximum. Our 
VA does not currently have the ability to mitigate these 
threshold variances, although the LKF does attempt to 
adjust for them. The LKF also produces a lag of about 15 
iterations that may be due to processing speed. A future 
improvement is increasing the complexity of the LKF and 
the VA by making them usable with multiple types of 

sensors. Because of their simplicity, both the VA and the 
LKF had to be specifically tailored in the code to the 
needs of the Kinect, the Servos, and the processing 
environment. While the simplicity of the theory and 
algorithms can remain the same, there needs to be added 
complexity to the code to allow for their use on multiple 
software and hardware platforms. 

The major hurdle that presented the most problems is 
the lack of accuracy of the Kinect optical/depth sensors. 
If the sensor is not accurate, then the VA is going to have 
a limited threshold of accuracy, and if the VA is limited 
in this way, the LKF can only do so much to transform of 
the angles so that they more accurately describe the 
absolute position of the users arm movements. Increasing 
the quality of the data received, as well as finding 
alternate sources of joint coordinates are some of the 
viable solutions to this problem. Other improvements to 
the movement include adding more degrees of freedom to 
the shoulder and elbow joints, as well as improving the 
strength and quality of the servos for increased weights. 

Different combinations of the angles between the 
Kinect skeletons joints can be useful in recognizing 
specific movements such as sitting down or running. The 
research here explained is designed to fit the arm systems 
of the Telebot, a much bigger project that involves an 
entire humanoid robot. Even so, the design can also be 
applied to other projects that need similar systems or 
adapted to the control of completely different structures. 

Although the systems used here are not entirely perfect 
and further development has to be performed to improve 
its capabilities, the VA and LFK algorithms are a great 
step to the proper control of humanoid robotic arms. 
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