
Standardized Linearization and Vectorization

Algorithm for Arm Motion Control of A Humanoid
Telepresence Robot

Michael Waddell, Joel Villasuso, Daniela ChavezGuevera, and Jong-Hoon Kim
Discovery Lab, School of Computing and Information Sciences

Florida International University, Miami, FL 33199 USA
kimj@cis.fiu.edu

Abstract-- Recently, the new motion sensor: the Kinect is

being used for natural motion retrieval with no additional

equipment on the operator, less computational demand, and

it is cost effective. But many restrictions apply because the

results retrieved from the Kinect include noisy data which

disturbs precise and smooth robot motion control. We

propose a simple linearization algorithm to improve the

accuracy of the data retrieved from the Kinect and designed

a vectorization algorithm for converting positions of an

operator's skeleton in three dimensions to robot motions. In

this paper, we provide the algorithm and its

implementation. Furthermore, we demonstrate the

performance of the algorithm using the prototype robot.

Index Terms--Kinect, Motion Sensor, Humanoid

Telepresence Robot

I. INTRODUCTION

Tele-presence robots are capable of allowing user

interaction with an environment remotely. This concept is

used in different applications such as navigation, tele

surgery, sub-sea work, education, and outer-space

exploration. Some te1e-presence robots are built to

physically represent their human operators when

interacting with other individuals in remote areas. Others

are intended to be an avatar in dangerous environments

which require effective human to robot interaction. Well

known tele-presence robots such as QB [1] and Navigoid

[2] are able to physically represent their human operators

but they lack key human-like gestures and emotions. The

Telebot [7,8] is a project that uses the concept of tele

presence to physically enable handicapped military

veterans and police officers to return to their public duties

by creating a humanoid robot that is easily and accurately

controlled by the officer [3]. The Telebots system

includes a balancing mechanism, head, vision, hand, and

arm control. Arms are the Telebots primary means of

manipulating its environment, and their control is the

focus of this research. They allow the Telebot to defend

itself, interact with humans by means of a handshake or a

hug, and even communicate using sign-language.

Accurate arm motions are therefore a vital component

of the overall function of any te1e-robot. This paper

presents a simple Vectorization Algorithm for

interpreting and then emulating a person's arm movement,

and a Linearization Algorithm to improve the accuracy of

the data retrieved from a Kinect sensor. The goal of this

research is to provide a simple way of using these

algorithms to control robotic arms that can easily be

reproduced for any purpose and for any combination of

sensor hardware and computing software.

This paper is organized by first explaining our
methodology, then its implementation, and then finally an
evaluation of the results.

II. STATES OF ART

Various groups have attempted to create solutions to
accurately translate human arm gestures in a robot using
the Kinect sensor. Such works include "Real-time 3D
Object Tracking Using Kinect Sensor" [4] by Takayuki
Nakamura which uses complex point recognition tracking
algorithm to determine the changing coordinates of an
arm in 3D space, and "Design and Implementation of
Human-Robot Interactive Demonstration System Based
on Kinect" [5], by Liying Cheng et ai, which uses a
simple product of vectors to determine the angles
between different vectors and does not use any filters to
adjust for noisy data. The two major faults of the current
research done on arm control is that the Vectorization
techniques are far too specialized and hard to replicate,
while the Linearization techniques are lacking in their
ability to dynamically account of sensor noise. In "Full
Body imitation of human motions with kinect and
heterogeneous kinematic structure of humanoid robot"
[5] , Van Young Nguyen attempts to map the obtained
kinematic data from the Kinect to control a humanoid
robot, but it falls short in implementing it beyond a
computer simulation. In "Developing a Gesture Based
Remote Human-Robot Interaction System Using Kinect"
[6] , Qian, et al. succeed in controlling a robotic arm using
the Kinect sensor, however it is limited in that its primary
function is to recognize and imitate a limited library of
gestures.

We address these issues by creating easily replicated
and broadly applicable Vectorization and Linearization
Algorithms.

III. PROPOSED ALGORITHM

The Vectorization Algorithm (VA) translates new data
from the optical/depth sensor into usable data. To present

the V A, we will focus on the angle Alpha in the YZ
Plane.

Figure 1: X,Y, and Z Shoulder Coordinate System

A. Vectorization
The VA is the method we use to calculate the angles

Alpha, Beta, Gamma, and Delta and it is significant
because it quantifies the 3D movements of human arms in
vector space. A 3D environment is created and any
movement that the optical/depth sensor measures was
interpreted as changes of angle Alpha between the

vectors in Fig. 1 X-, Y-, and Z-coordinates. The arm
vector, which has a fixed magnitude, is created using the
shoulder point as a fixed XYZ origin (0,0,0), and the
dynamic X-, Y-, and Z-coordinates of the elbow point as
it changes in 3D space and is given by the equation:

(XYZ _Elbow - Point) - (XYZ _Shoulder - Point)

The arm vectors 3D movements are represented by
vector projections in two, 2D planes, one which
represents its movements in the YZ-plane and the other,
the XV-plane. The arms vector created in the YZ-plane is
given by the equation:

(XY _Elbow - Point)(XY _Shoulder - Point)

Angle Alpha in the YZ-plane combines with angle
Beta in the XY-Plane created the arms 3D movement.
Each angle is calculated using the Law of Cosines, and in
2D space these triangles are right triangles created by the
dynamic YZ- and XV-vectors and the fixed virtual vector
pinned to the shoulder point, as shown in Fig. l. The X
axis is not plotted in the YZ-plane, and therefore any
change in its value is represented as a change in projected
magnitude of the YZ arm vector.

Since Alpha is calculated with right triangles, any
change in the magnitude of the YZ arm vector as a result
of solitary movement in the X-axis creates similar right
triangles and therefore Alpha does not change. This is
how the two planes are separated and their respective
angles calculated using translated local coordinates. To

further adjust for rotation that might otherwise decrease
the accuracy of the angles, Rotate(X, Y, and Z) is used to
calculate changes in the body's rotation relative to the
global coordinate system's XY- and YZ- planes. Once an
offset rotation angle is calculated to be of a certain "x"
degrees using quaternion calculations, the rotation of the
joint is compensated and eliminated by an equal and
opposite " -x" degrees. In this way, as far as the code is
concerned the body and its joints' rotation do not factor
into the calculations of Alpha, Beta, Gamma and Delta.
Angles Gamma and Delta use the exact same method to
combine two, 2D planes to create 3D movement of the
elbow joint, as shown in Fig. 2.

+y

-y

Figure 2: X,Y, and Z Elbow Coordinate System

There are two differences with the elbows servos. The
first is that they are rotated at a 90 degree angle so that
the elbows first servo (Servo-3, controlled by angle
Gamma), which provides rotation, moves in the XZ-plane
while the second servo (Servo-4 which controls angle
Delta) moves in the YZ-plane. The second difference is
that since the elbows rotation is actually physically
provided by the shoulder, Servo- 3 is instead added as the
3rd servo on the shoulder joint, as shown in Fig. 3. While
our VA is accurate, sensor noise obscures the true values
of the angles, and one way of dealing with this through
filtering the data through a Linearization Algorithm.

Figure 3: X,Y, and Z Servo Coordinate System

B. Linearization
Limiting noise is possible by using filter algorithms

that calculate measured values more representative of
their true values. Many robotics software use Non-Linear

Filter Algorithms, however these are limited because
their filtering algorithm does not change dynamically. A
Linear Filter Algorithm known as the Kalman Filter is
extremely effective by comparison and our simplified
Linearization Kalman Filter (LKF) is explained below in
terms of the angle Alpha. The LKF works in two
recursive steps that occur during each calculation of
Alpha. The first step adjusts for magnitude and either
adds or subtracts the dynamic Expected Measurement
Variance (ExpM) from the measured value (M). The
Ex pM is the magnitude of the measurement error we
expect to get from the optical/depth sensor, and M is the
angle Alpha resulting from the VA. The ExpM is either
added or subtracted depending on whether or not the arm
is moving within certain minimum and maximum sensor
thresholds that need to be accounted for. The second step
adjusts for measurement noise by transforming the new
angle Alpha from the first step by comparing the
measured value against an expected value using the
following equations:

ExpectedEr ror
Weight= --=-------

ExpectedEr ror + ExpM

Where Weight is a value between 0 and 1 that
determines if the expected error of the expected value
(ExpE) is more or less significant than ExpM. The
Weight will approach if ExpE is larger than ExpM,
and it will approach 0 if ExpM is larger than ExpE,
affecting the new Alpha in the following way:

Alpha = [(1 -Weight) * (E)] + (Weight) * (M)

If ExpM is larger than ExpE, then we expect the
measured value of Alpha to be less accurate than the
expected values of Alpha, so we give them less weight
when calculating the new Alpha. The new Alpha will be a
sum of E added to M with each value adjusted by the
Weight. The final step is to update these values for each
iteration by creating a new E by adding a direction and
velocity metric to the previous value of the new Alpha,
and testing this against the next M in the same process
outline above. The direction metric is determined by
calculating whether the values of E are increasing or
decreasing between each iteration, and the velocity metric
is determined by the magnitude of this change.

IV. IMPLEMENTATION

Our vectorization and linearization algorithm are
implemented by Java with OpenNI library and XBox
Kinect Sensor which provides 20 joint points of a body
skeleton in 3D space.

A. Implementation of Vectorization
The VA sample code segment using the angles, Alpha

and Beta, which control Servos -1 and -2 for one arm is
follow:

Section: 1
• PVector axis = new PVector(O, 100);
• PVector axis = new PVector(O, 100);
• PVector armYZ = new PVector(y , z);
• PVector armXY = new PVector(x , y);

Section: 2
• PVector axis = new PVector(O, 100);
• PVector axis = new PVector(O, 100);
• PVector armYZ = new PVector(y , z);
• PVector armXY = new PVector(x , y);

Section: 3
• Alpha = map(Alpha, alphaMax, alphaMin,

alpha2Max,alpha2Min);
• Beta = map (Beta, beta2Max, beta2Min,

beta2Max,beta2Min);

Implementing the V A begins in Section 1 with the
creation of three PVectors: axis, arm yz, and arm xy.
PVector axis creates a stationary vector by which the arm
vectors in the YZPlane and XY-Plane will be compared.
PVector arm yz creates the users arm vector movements
in the YZ-Plane. PVector arm xy creates the users arm
vector movements in the XYPlane.

[noJ
[if "alue� wllhln rallgel --1

[noJ

[If value� wllhln ral'lgel ___ --'

[yesl

[if repeat trueJ

Figure 4: Logic Flowchart of Code

Section 2 creates the angles Alpha and Beta by using the
function angleBetweenO which calculates angles between
the dynamic PVectors arm yz and arm xy and the fixed
PVector axis using the Law of Cosines. Section 3
transforms the angles Alpha and Beta into values that will
be sent to Servo-l and Servo-2 using the mapO function
which creates a ratio of Alpha and Betas minimum and
maximum values (defined by alpha min, alpha max, and
beta min, beta max) and Servo-l and Servo-2s minimum
and maximum values (defined by alpha 2 min, alpha 2
max, and beta 2 min, beta 2 max). The values of alpha 2
and beta 2 are then sent to Servo-l and Servo-2
respectively. Servo-l controls the vertical (YZ)
movement while Servo-2 controls the horizontal (XY)

movement. The angles Alpha and Beta are sent as a string
in the format as below.

< servo id + angle + speed>

These inputs are sent through a serial port to the
processor that communicates with the Servos
independently. The flow of the logic of this entire process
can be seen in the Flowchart of Fig. 4.

A sample of 600 iterations of the angle Alpha can be
found in Fig. 5 and is meant to represent a change in the
X-axis in the YZ-plane where Alpha should not
significantly change. It is obvious that the data collected
from the VA suffers from a significant amount of noise
that obscures its true values. We can solve this through
the implementation of the LKF.

B. Implementation of Linearization
Implementing the LKF code begins in Section 4 by

assigning the value of expected value of Alpha (Exp) as
the function KFilter. The function first determines if the
measured value of Alpha (M) is within the minimum
detectable threshold of the Kinect (min detect, which is
around 25-30 degrees); a lower bound where the Kinect
overcompensates by adding its own expected
measurement error. If M is below this threshold, it is
Ex pM higher than it should be; if M is above this
threshold, it is ExpM lower than it should be. In Section 5,
we see the exact same arithmetic previously outlined. The
new value of Alpha, R is returned and the function is
completed for this iteration. Exp is updated as the value
of this returned R. In Section 6, Exp is transformed using
the direction and velocity metrics, which determine the
direction the arm is moving in by analyzing if each new
iteration of Exp is greater or less than the previous value.
For instance, if the newly updated Exp is greater than its
previous value (prev), then the velocity metric is added
because we expect the next value to continue to increase.
The magnitude of the velocity vector is determined a
moving average of the magnitude of change at each step.

Section: 4
• Exp = KFilter(Exp, M, Err, ExpM);
• float KFilterAlpha(float Exp, float M, float Err,

float ExpM);
• if (M > minDetect) M = M + Exp.M;
• if (M < minDetect) M = M - Exp.M;

Section: 5
• W = (Err)/(Err+ExpM);

• R = ((1 - W) * Exp) + (W * M);
• returnR ;

Section: 6
• if (prev i E) f
• DiffAlpha = Exp - prev;
• StoredDE = DEAlpha;
• Exp = (Exp + DEAlpha);

Section: 7
• AlphaZ = map(Exp, alphaMax, alphaMin,

alpha2Max, alpha2Min) ;

Vectorization of Alpha(degrees)
200

...... AJ "V1 {\ II
(y \ /\
I Iff! \ I \
I l V\

180

160

140

120

100
� \ \ -VA Measured

80

60

40

20

100 200 300 400 500 600

Figure 5: Vectorization Applied to Alpha

This process modifies the value of the angle Alpha
sent to Servo-l because the Alpha we obtained by the V A
has now been put through the LKF, changing the
previous code to Fig. 5. A sample transformation by the
LKF on the 600 iterations of the angle Alpha previously
measured by the VA can be seen in Section 7, which
shows the rigid troughs and peaks as lessened in the
graphical representation of the users arm movement in
the YZ-Plane and what we would expect to see in a
solitary movement in the X-axis.

V. EVALUATION

Evaluating the validity of the VA and its
implementation is by seeing how the calculated values of
the Alpha using the VA compare to the absolute values of
Alpha sent to Servo-I, as shown in Fig. 6. The Alpha
value sent to Servo-l changed from 0 degrees to 180
degrees twice over an interval of 800 iterations in Fig. 6.

VA and lKF Applied to Absolute Positions
100,-------------------------------------

180 t-------....,..,.,.,.------------------r7'�------

lW t-----����------------�� .. �----

lW t-----�+_��------------�;r_;�----

110 t-----�'-----_+tl\r__----------ft_jIlt---_'r'II_--

l00 t---�1_--_+tl��--------��m_--_r�-- -R�w
-Kalman

w t-��--------��----_+rH--�----��

1Ol-"--V------------+----'\'1--"o.-,-----H---fl----I---------t-'

100 100 300 400 500 700 800

Figure 6: Comparison between Absolute, Raw, and

Filtered Data

These values are known values that have zero noise
since they are sent directly to Servo-l as test values of the
angle Alpha, representing the true movement and

therefore absolute position of Servo-I. The Kinect then
read and calculated these values using the VA. The
values are plotted versus their Absolute values, as shown
in Fig. 6 as the Raw Series. While the V A accomplished
its task of calculating and then emulating the absolute
value of the angle Alpha, there is an obvious variance
present in the form of both noise and an incorrect
magnitude. One possible way of mitigating this noise is
through the LKF, which allows for the obscured values of
Alpha to be transformed into a smooth graph that more
closely resembles the Absolute movement, as can be seen
in Fig. 6 as the Kalman Series. The LKF has done a great
job in reducing the amount of noise that significantly
reduced the accuracy of Alphas value. Using an integral
function to determine the accuracy of both the Raw and
the Kalman series by comparing them to the Absolute
graph, on average the Raw measured VA values had a
73.6 percent accuracy, while the LKF values had a 96.3
percent accuracy. By first calculating the angle Alpha via
the V A, and then putting it through the LKF, Servo-l will
move in such a way that it appears to be more accurately
emulating the users arm movements. This exact same
method is used with the angles Beta, Gamma, and Delta
that are sent to Servo-2, Servo-3 and Servo-4.

(a) Motion I (b) Motion 2

(e) Motion 3 (d) Motion 4

Figure 7: Motion Control Implementation Demo

Our vectorization and linearization algorithm can provide
proper angles of operator's each joint into a robot
controller so that our test robot nicely imitates operator's
motions as depicted on Fig. 7.

VI. CONCLUSION

The VA has limitations in its calculating ability at
certain thresholds when trying to calculate the angles
Alpha, Beta, Gamma, and Delta. At these thresholds that
exist around 0 degrees and 180 degrees, the noise from
our optical and depth sensor reaches its maximum. Our
VA does not currently have the ability to mitigate these
threshold variances, although the LKF does attempt to
adjust for them. The LKF also produces a lag of about 15
iterations that may be due to processing speed. A future
improvement is increasing the complexity of the LKF and
the VA by making them usable with multiple types of

sensors. Because of their simplicity, both the VA and the
LKF had to be specifically tailored in the code to the
needs of the Kinect, the Servos, and the processing
environment. While the simplicity of the theory and
algorithms can remain the same, there needs to be added
complexity to the code to allow for their use on multiple
software and hardware platforms.

The major hurdle that presented the most problems is
the lack of accuracy of the Kinect optical/depth sensors.
If the sensor is not accurate, then the VA is going to have
a limited threshold of accuracy, and if the VA is limited
in this way, the LKF can only do so much to transform of
the angles so that they more accurately describe the
absolute position of the users arm movements. Increasing
the quality of the data received, as well as finding
alternate sources of joint coordinates are some of the
viable solutions to this problem. Other improvements to
the movement include adding more degrees of freedom to
the shoulder and elbow joints, as well as improving the
strength and quality of the servos for increased weights.

Different combinations of the angles between the
Kinect skeletons joints can be useful in recognizing
specific movements such as sitting down or running. The
research here explained is designed to fit the arm systems
of the Telebot, a much bigger project that involves an
entire humanoid robot. Even so, the design can also be
applied to other projects that need similar systems or
adapted to the control of completely different structures.

Although the systems used here are not entirely perfect
and further development has to be performed to improve
its capabilities, the VA and LFK algorithms are a great
step to the proper control of humanoid robotic arms.

ACKNOWLEDGMENT

This research is conducted at the Discovery Lab,

Florida International University and is supported in part

by a donation from Lieutenant Commander Jeremy

Robins, who also provided the conceptual theme for this

project. We are also thankful to Dyplast Products for their

materials donation.

REFERENCES

[IJ Guizzo, E., "When My Avatar Went to Work", IEEE
Spectrum, vo1.47, no.9, pp.26,50, September 201 O.

[2J lunichi Sugiyama, Dzmitry Tsetserukou, and lun Miura,
"NAVIgoid: robot navigation with haptic vision", In
SIGGRAPH Asia 2011 Emerging Technologies (SA 11).
ACM, New York, NY, USA" Article 9 , 1 pages. 2011

[3J Nakamura, T., "Real-time 3-D object tracking using Kinect
sensor", 2011 IEEE International Conference on Robotics
and Biomimetics (ROBIO), vol., no., pp.784,788, 7-11
Dec. 2011.

[4J Liying Cheng, Qi Sun, Han Su, Yang Cong and Shuying
Zhao, "Design and implementation of human-robot
interactive demonstration system based on Kinect", the
24th Chinese Control and Decision Conference (CCDC),
vol., no., pp.97l,975, 23-25 May 2012.

[5J Van Vuong Nguyen and Joo-Ho Lee, "Full-body imitation
of human motions with kinect and heterogeneous
kinematic structure of humanoid robot", 2012 IEEE/SICE

International Symposium on System Integration (Sll), vol.,
no., pp.93,98, 16-18 Dec. 2012

[6] Qian, Kun, Jie Niu, and Hong Yang, "Developing a
Gesture Based Remote Human-Robot Interaction System
Using Kinect", International Journal of Smart Home,Vol.
7, No. 4, July, 2013.

[7] M. Prabakar, and J-H Kim, "TeleBot: Design Concept of
Telepresence Robot for Law Enforcement", Proceedings of
the 2013 World Congress on Advances in Nano,
Biomechanics, Robotics, and Energy Research
(ANBRE13), Seoul, Korea, pp. 34-42, August 25-28, 2013

[8] N. Prabakar, C. Tope, and J-H Kim, "A Smart Multi
Telepresence Robot Management System", Proceedings of
the 2013 World Congress on Advances in Nano,
Biomechanics, Robotics, and Energy Research
(ANBREI3), Seoul, Korea, pp. 43-51, August 25-28,
2013.

